Energy Storage Science and Technology ›› 2024, Vol. 13 ›› Issue (5): 1677-1687.doi: 10.19799/j.cnki.2095-4239.2024.0003
• Energy Storage Test: Methods and Evaluation • Previous Articles Next Articles
Lin HE1,2(), Jiangyan LIU1,2, Bin LIU1,2(
), Kuining LI1,2, Shuai DAI1,2
Received:
2024-01-02
Revised:
2024-01-28
Online:
2024-05-28
Published:
2024-05-28
Contact:
Bin LIU
E-mail:helin_cqu@163.com;liubin0921@cqu.edu.cn
CLC Number:
Lin HE, Jiangyan LIU, Bin LIU, Kuining LI, Shuai DAI. Generalized impact of data distribution diversity on SOC prediction of lithium battery[J]. Energy Storage Science and Technology, 2024, 13(5): 1677-1687.
1 | YANG R X, XIONG R, WEIXIANG S, et al. Extreme learning machine-based thermal model for lithium-ion batteries of electric vehicles under external short circuit[J]. Engineering, 2021, 7(3): 266-289. |
2 | XIONG R, MA S X, LI H L, et al. Toward a safer battery management system: A critical review on diagnosis and prognosis of battery short circuit[J]. iScience, 2020, 23(4): 101010. |
3 | CAI Z H, LIU G F, LUO J. Research state of charge estimation tactics of nickel-hydrogen battery[C]//2010 International Symposium on Intelligence Information Processing and Trusted Computing. Huanggang, China. IEEE, 2010: 184-187. |
4 | XIONG R, CAO J Y, YU Q Q, et al. Critical review on the battery state of charge estimation methods for electric vehicles[J]. IEEE Access, 2018, 6: 1832-1843. |
5 | BIAN C, HE H, YANG S, et al. State-of-charge sequence estimation of lithium-ion battery based on bidirectional long short-term memory encoder-decoder architecture[J]. Journal of Power Sources, 2020, 449: 227558. |
6 | CHEMALI E, KOLLMEYER P J, PREINDL M, et al. State-of-charge estimation of Li-ion batteries using deep neural networks: A machine learning approach[J]. Journal of Power Sources, 2018, 400: 242-255. |
7 | TIAN Y, LAI R, LI X, et al.. A combined method for state-of-charge estimation for lithium-ion batteries using a long short-term memory network and an adaptive cubature Kalman filter[J]. Applied Energy, 2020, 265: 114789. |
8 | BABAEIYAZDI I, REZAEI-ZARE A, SHOKRZADEH S. State of charge prediction of EV Li-ion batteries using EIS: A machine learning approach[J]. Energy, 2021, 223: 120116. |
9 | LI Y, ZOU C, BERECIBAR M, et al. Random forest regression for online capacity estimation of lithium-ion batteries[J]. Applied Energy, 2018, 232: 197-210. |
10 | MENG J H, STROE D I, RICCO M, et al. A simplified model-based state-of-charge estimation approach for lithium-ion battery with dynamic linear model[J]. IEEE Transactions on Industrial Electronics, 2019, 66(10): 7717-7727. |
11 | HONG J, WANG Z, CHEN W, et al. Online joint-prediction of multi-forward-step battery SOC using LSTM neural networks and multiple linear regression for real-world electric vehicles[J]. Journal of Energy Storage, 2020, 30: 101459. |
12 | WANG G, LYU Z, LI X. An optimized random forest regression model for Li–ion battery prognostics and health management[J]. Batteries, 2023, 9(6): 332. |
13 | WANG X, HU B, SU X, et al. State of health estimation for lithium-ion batteries using random forest and gated recurrent unit[J]. Journal of Energy Storage, 2024, 76: 109796. |
14 | YANG N K, SONG Z Y, HOFMANN H, et al. Robust state of health estimation of lithium-ion batteries using convolutional neural network and random forest[EB/OL]. 2020: arXiv: 2010.10452. http://arxiv.org/abs/2010.10452 |
15 | HU C, JAIN G, ZHANG P Q, et al. Data-driven method based on particle swarm optimization and k-nearest neighbor regression for estimating capacity of lithium-ion battery[J]. Applied Energy, 2014, 129: 49-55. |
16 | ZHOU Y, HUANG M, PECHT M, et al. Remaining useful life estimation of lithium-ion cells based on knearest neighbor regression with differential evolution optimization[J]. Journal of Cleaner Production, 2020, 249: 119409. |
17 | CHEN J X, ZHANG Y, WU J, et al. SOC estimation for lithium-ion battery using the LSTM-RNN with extended input and constrained output[J]. Energy, 2023, 262: 125375. |
18 | LI W, SENGUPTA N, DECHENT P, et al. Online capacity estimation of lithium-ion batteries with deep long short-term memory networks[J]. Journal of Power Sources, 2021, 482: 228863. |
19 | VIDAL C, KOLLMEYER P, CHEMALI E, et al. Li-ion battery state of charge estimation using long short-term memory recurrent neural network with transfer learning[C]//2019 IEEE Transportation Electrification Conference and Expo (ITEC). Detroit, MI, USA. IEEE, 2019: 1-6. |
20 | LIU Y, SHU X, YU H Z, et al. State of charge prediction framework for lithium-ion batteries incorporating long short-term memory network and transfer learning[J]. Journal of Energy Storage, 2021, 37: 102494. |
21 | WANG Y, CHEN Z, ZHANG W. Lithium-ion battery state-of-charge estimation for small target sample sets using the improved GRU-based transfer learning[J]. Energy, 2022, 244: 12317. |
22 | Pro machine learning algorithms[M]. Apress, Berkeley, CA. |
23 | TORGO L. Chapman & Hall/CRC data mining and knowledge discovery series[M]. Data Mining with R Volume, 2010. |
24 | BREIMAN L, CUTLER A. Random forests[J]. Machine Learning, 2001, 45(1): 5-32. |
25 | BREIMAN L. Bagging predictors[J]. Machine Learning, 1996, 24(2): 123-140. |
26 | HO T K. The random subspace method for constructing decision forests[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998, 20(8): 832-844. |
27 | BREIMAN L, FREIDMANJ H, OLSHEN R A, et al. Classification and regression trees[M]. Chapman & Hau/CRC, 1984. |
28 | HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780. |
29 | DR K S, DR C B. Data analytics: Why data normalization[J]. International Journal of Engineering & Technology, 2018, 7(4.6): 209. |
30 | MURRAY R. Remarks on some nonparametric estimates of a density function[J]. The Annals of Mathematical Statistics, 1956, 27(3): 832-837. |
31 | PARZEN E. On estimation of a probability density function and mode[J]. Annals of Mathematical Statistics, 1962, 33: 1065-1076. |
32 | EPANECHNIKOV V A.Nonparametric estimation of a multidimensional proability density[J]. Theory of Proability and Application,1969, 14: 153-158. |
33 | SILVERMAN B W. Density estimation for statistics and data analysis[M]. London: Chapman and Hall, 1986. |
[1] | Haiyang ZHOU, Zhendong ZHANG, Lei SHENG, Zehua ZHU, Xiaojun ZHANG, Chunfeng ZHANG. Simulation of immersion thermal performance regulation and thermal safety experimental study for energy storage lithium batteries [J]. Energy Storage Science and Technology, 2025, 14(5): 1866-1874. |
[2] | Haifei SONG, Lehong WANG, Yidong YUAN, Tianting ZHAO, Jie CHEN. Battery sampling voltage filtering and estimation based on improved Kalman filter algorithm [J]. Energy Storage Science and Technology, 2025, 14(5): 2106-2113. |
[3] | Honghui WANG, Jiaxin LI, Deren CHU, Yanyi LI, Ting XU. Study on the electrochemical performance failure mechanisms and thermal safety of lithium iron phosphate battery during storage conditions [J]. Energy Storage Science and Technology, 2025, 14(5): 1797-1805. |
[4] | Zhoulan ZENG, Lei SHANG, Zhijin HU, Zongfan WANG, Xiaochao XIN, Ying LIU. Li5FeO4@C high capacity prelithium cathode materials for lithium-ion batteries [J]. Energy Storage Science and Technology, 2025, 14(5): 1875-1883. |
[5] | Zhen YAN, Qiang LIU, Huibin LI, Jun ZHANG, Yahui JIANG. Power optimization management method for photovoltaic microgrids based on the state of charge of hybrid energy storage systems [J]. Energy Storage Science and Technology, 2025, 14(5): 2067-2077. |
[6] | Ziming MO, Zongxin RAO, Jianfei YANG, Menghao YANG, Liming CAI. Construction and characteristic analysis of key parameters in a gas-thermal model for thermal runaway in lithium-ion battery based on overcharge [J]. Energy Storage Science and Technology, 2025, 14(5): 1784-1796. |
[7] | Tao WANG, Tian MAO, Baorong ZHOU, Wenmeng ZHAO, Hao HUA. Exploration of virtual synchronous machine control based on energy storage state of charge [J]. Energy Storage Science and Technology, 2025, 14(5): 2032-2034. |
[8] | Lei PENG, Zhaopeng NI, Yue YU, Fupeng SUN, Xiulong XIA, Peng ZHANG, Sibo SUN. Experimental study on NCM lithium-ion battery electric vehicle fire caused by overcharging [J]. Energy Storage Science and Technology, 2025, 14(4): 1484-1495. |
[9] | Jiangwei SHEN, Yixin SHE, Xing SHU, Yonggang LIU, Fuxing WEI, Xuelei XIA, Zheng CHEN. State of health estimation for lithium batteries based on short-term random charging data and optimized convolutional neural network [J]. Energy Storage Science and Technology, 2025, 14(4): 1585-1595. |
[10] | Ruihao LIU, Xiaole MA, Yuxuan ZHANG, Yueying ZHU, Shiqiang LIU, Guangli BAI. Influencing factors of thermal property parameter testing of lithium-ion batteries based on accelerating rate calorimeters [J]. Energy Storage Science and Technology, 2025, 14(4): 1596-1602. |
[11] | Zuolin DONG, Jinyan SONG, Zidi MENG. Lithium-ion battery life prediction based on mode decomposition and deep learning [J]. Energy Storage Science and Technology, 2025, 14(4): 1645-1653. |
[12] | Zhiming CHEN, Aimin CHU, Ziyu ZHOU, Yuping Zhao, Youming CHEN. Preparation and performance of Li-rich cathode material by carbon-containing droplet combustion [J]. Energy Storage Science and Technology, 2025, 14(4): 1362-1368. |
[13] | Jinming YUE, Yuanli LIU, Yixia CHEN, Xiqian YU, Hong LI. Study on the separation conditions of lithium ion battery electrolyte by GC-MS detection [J]. Energy Storage Science and Technology, 2025, 14(4): 1564-1573. |
[14] | Peng WANG, Jun ZHOU, Xing WU, Tao LIU. Remaining useful life prediction of a lithium-ion battery based on a cheetah optimization-extreme learning machine with improved Sine chaotic mapping [J]. Energy Storage Science and Technology, 2025, 14(4): 1603-1616. |
[15] | Shuaibo ZENG, Yongyi LI, Jing PENG, Zixing HE, Zhuojian LIANG, Wei XU, Lingxiao LAN, Xinghua LIANG. Optimization design of conductive agent based on ternary lithium-ion battery [J]. Energy Storage Science and Technology, 2025, 14(3): 1187-1197. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||