Energy Storage Science and Technology ›› 2024, Vol. 13 ›› Issue (5): 1677-1687.doi: 10.19799/j.cnki.2095-4239.2024.0003
• Energy Storage Test: Methods and Evaluation • Previous Articles Next Articles
Lin HE1,2(), Jiangyan LIU1,2, Bin LIU1,2(), Kuining LI1,2, Shuai DAI1,2
Received:
2024-01-02
Revised:
2024-01-28
Online:
2024-05-28
Published:
2024-05-28
Contact:
Bin LIU
E-mail:helin_cqu@163.com;liubin0921@cqu.edu.cn
CLC Number:
Lin HE, Jiangyan LIU, Bin LIU, Kuining LI, Shuai DAI. Generalized impact of data distribution diversity on SOC prediction of lithium battery[J]. Energy Storage Science and Technology, 2024, 13(5): 1677-1687.
1 | YANG R X, XIONG R, WEIXIANG S, et al. Extreme learning machine-based thermal model for lithium-ion batteries of electric vehicles under external short circuit[J]. Engineering, 2021, 7(3): 266-289. |
2 | XIONG R, MA S X, LI H L, et al. Toward a safer battery management system: A critical review on diagnosis and prognosis of battery short circuit[J]. iScience, 2020, 23(4): 101010. |
3 | CAI Z H, LIU G F, LUO J. Research state of charge estimation tactics of nickel-hydrogen battery[C]//2010 International Symposium on Intelligence Information Processing and Trusted Computing. Huanggang, China. IEEE, 2010: 184-187. |
4 | XIONG R, CAO J Y, YU Q Q, et al. Critical review on the battery state of charge estimation methods for electric vehicles[J]. IEEE Access, 2018, 6: 1832-1843. |
5 | BIAN C, HE H, YANG S, et al. State-of-charge sequence estimation of lithium-ion battery based on bidirectional long short-term memory encoder-decoder architecture[J]. Journal of Power Sources, 2020, 449: 227558. |
6 | CHEMALI E, KOLLMEYER P J, PREINDL M, et al. State-of-charge estimation of Li-ion batteries using deep neural networks: A machine learning approach[J]. Journal of Power Sources, 2018, 400: 242-255. |
7 | TIAN Y, LAI R, LI X, et al.. A combined method for state-of-charge estimation for lithium-ion batteries using a long short-term memory network and an adaptive cubature Kalman filter[J]. Applied Energy, 2020, 265: 114789. |
8 | BABAEIYAZDI I, REZAEI-ZARE A, SHOKRZADEH S. State of charge prediction of EV Li-ion batteries using EIS: A machine learning approach[J]. Energy, 2021, 223: 120116. |
9 | LI Y, ZOU C, BERECIBAR M, et al. Random forest regression for online capacity estimation of lithium-ion batteries[J]. Applied Energy, 2018, 232: 197-210. |
10 | MENG J H, STROE D I, RICCO M, et al. A simplified model-based state-of-charge estimation approach for lithium-ion battery with dynamic linear model[J]. IEEE Transactions on Industrial Electronics, 2019, 66(10): 7717-7727. |
11 | HONG J, WANG Z, CHEN W, et al. Online joint-prediction of multi-forward-step battery SOC using LSTM neural networks and multiple linear regression for real-world electric vehicles[J]. Journal of Energy Storage, 2020, 30: 101459. |
12 | WANG G, LYU Z, LI X. An optimized random forest regression model for Li–ion battery prognostics and health management[J]. Batteries, 2023, 9(6): 332. |
13 | WANG X, HU B, SU X, et al. State of health estimation for lithium-ion batteries using random forest and gated recurrent unit[J]. Journal of Energy Storage, 2024, 76: 109796. |
14 | YANG N K, SONG Z Y, HOFMANN H, et al. Robust state of health estimation of lithium-ion batteries using convolutional neural network and random forest[EB/OL]. 2020: arXiv: 2010.10452. http://arxiv.org/abs/2010.10452 |
15 | HU C, JAIN G, ZHANG P Q, et al. Data-driven method based on particle swarm optimization and k-nearest neighbor regression for estimating capacity of lithium-ion battery[J]. Applied Energy, 2014, 129: 49-55. |
16 | ZHOU Y, HUANG M, PECHT M, et al. Remaining useful life estimation of lithium-ion cells based on knearest neighbor regression with differential evolution optimization[J]. Journal of Cleaner Production, 2020, 249: 119409. |
17 | CHEN J X, ZHANG Y, WU J, et al. SOC estimation for lithium-ion battery using the LSTM-RNN with extended input and constrained output[J]. Energy, 2023, 262: 125375. |
18 | LI W, SENGUPTA N, DECHENT P, et al. Online capacity estimation of lithium-ion batteries with deep long short-term memory networks[J]. Journal of Power Sources, 2021, 482: 228863. |
19 | VIDAL C, KOLLMEYER P, CHEMALI E, et al. Li-ion battery state of charge estimation using long short-term memory recurrent neural network with transfer learning[C]//2019 IEEE Transportation Electrification Conference and Expo (ITEC). Detroit, MI, USA. IEEE, 2019: 1-6. |
20 | LIU Y, SHU X, YU H Z, et al. State of charge prediction framework for lithium-ion batteries incorporating long short-term memory network and transfer learning[J]. Journal of Energy Storage, 2021, 37: 102494. |
21 | WANG Y, CHEN Z, ZHANG W. Lithium-ion battery state-of-charge estimation for small target sample sets using the improved GRU-based transfer learning[J]. Energy, 2022, 244: 12317. |
22 | Pro machine learning algorithms[M]. Apress, Berkeley, CA. |
23 | TORGO L. Chapman & Hall/CRC data mining and knowledge discovery series[M]. Data Mining with R Volume, 2010. |
24 | BREIMAN L, CUTLER A. Random forests[J]. Machine Learning, 2001, 45(1): 5-32. |
25 | BREIMAN L. Bagging predictors[J]. Machine Learning, 1996, 24(2): 123-140. |
26 | HO T K. The random subspace method for constructing decision forests[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998, 20(8): 832-844. |
27 | BREIMAN L, FREIDMANJ H, OLSHEN R A, et al. Classification and regression trees[M]. Chapman & Hau/CRC, 1984. |
28 | HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780. |
29 | DR K S, DR C B. Data analytics: Why data normalization[J]. International Journal of Engineering & Technology, 2018, 7(4.6): 209. |
30 | MURRAY R. Remarks on some nonparametric estimates of a density function[J]. The Annals of Mathematical Statistics, 1956, 27(3): 832-837. |
31 | PARZEN E. On estimation of a probability density function and mode[J]. Annals of Mathematical Statistics, 1962, 33: 1065-1076. |
32 | EPANECHNIKOV V A.Nonparametric estimation of a multidimensional proability density[J]. Theory of Proability and Application,1969, 14: 153-158. |
33 | SILVERMAN B W. Density estimation for statistics and data analysis[M]. London: Chapman and Hall, 1986. |
[1] | Ziwei TANG, Yupu SHI, Yuchan ZHANG, Yibo ZHOU, Huiling DU. Prediction of lithium-ion battery capacity degradation trajectory based on Informer [J]. Energy Storage Science and Technology, 2024, 13(5): 1658-1666. |
[2] | Nana FENG, Ming YANG, Zhouli HUI, Ruijie WANG, Hongyang NING. Prediction of the remaining useful life of lithium batteries based on Antlion optimization Gaussian process regression [J]. Energy Storage Science and Technology, 2024, 13(5): 1643-1652. |
[3] | Gaoqi LIAN, Min YE, Qiao WANG, Yan LI, Yuchuan MA, Yiding SUN, Penghui DU. State-of-charge estimation of lithium-ion batteries in rapid temperature-varying environments based on improved battery model and optimized adaptive cubature Kalman filter [J]. Energy Storage Science and Technology, 2024, 13(5): 1667-1676. |
[4] | Xinbing XIE, Kaiyue YANG, Xiaozhong DU. Mechanical behavior and structure of lithium-ion battery electrode calendering process [J]. Energy Storage Science and Technology, 2024, 13(5): 1699-1706. |
[5] | Yalu HAN, Yige CHEN, Huifang DI, Jiehuan LIN, Zhenbing WANG, Yang ZHANG, Fangyuan SU, Chengmeng CHEN. Research progress on failure of lithium-ion batteries under different service conditions [J]. Energy Storage Science and Technology, 2024, 13(4): 1338-1349. |
[6] | Ge LI, Xiangdong KONG, Yuedong SUN, Fei CHEN, Yuebo YUAN, Xuebing HAN, Yuejiu ZHENG. Method for sorting the dynamic characteristics of lithium-ion battery consistency based on production line big data [J]. Energy Storage Science and Technology, 2024, 13(4): 1188-1196. |
[7] | Bingjin LI, Xiaoxia HAN, Wenjie ZHANG, Weiguo ZENG, Jinde WU. Review of the remaining useful life prediction methods for lithium-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(4): 1266-1276. |
[8] | Ruizi WANG, Xunliang LIU, Ruifeng DOU, Wenning ZHOU, Juan FANG. A comparative study on diffusion-induced stress and thermal stress during discharge of ternary soft pack lithium-ion battery [J]. Energy Storage Science and Technology, 2024, 13(4): 1128-1141. |
[9] | Yuting WANG, Qiutong LI, Yiming HU, Xin GUO. Techniques for monitoring internal signals of lithium-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(4): 1253-1265. |
[10] | Aifang ZHANG, Bangda WEI, Zhuohao LI, Yang YANG, Tianqiang YANG, Jun YAO, Jie ZHANG, Fei LIU, Haomiao LI, Kangli WANG, Kai JIANG. Research progress on modeling and SOC online estimation of vanadium redox-flow batteries [J]. Energy Storage Science and Technology, 2024, 13(3): 1036-1049. |
[11] | Xiaoyu SHEN, Congbo YIN. SOH estimation of lithium-ion batteries using a convolutional Fastformer [J]. Energy Storage Science and Technology, 2024, 13(3): 990-999. |
[12] | Zhiguo ZHANG, Huaqing LI, Li WANG, Xiangming HE. Characteristics and preparation of metallized plastic current collectors for lithium-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(3): 749-758. |
[13] | Jian LIU, Libo YU, Zhenxing WU, Jiegang MOU. Effect of thermal characteristics of lithium-ion battery charging and discharging equipment on air cooling [J]. Energy Storage Science and Technology, 2024, 13(3): 914-923. |
[14] | Meiling WU, Lei NIU, Shiyou LI, Dongni ZHAO. Research progress on cathode prelithium additives used in lithium-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(3): 759-769. |
[15] | Xiaolei LI, Jian GAO, Weidong ZHOU, Hong LI. Application of COMSOL multiphysics in lithium-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(2): 546-567. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||