Energy Storage Science and Technology ›› 2023, Vol. 12 ›› Issue (11): 3479-3487.doi: 10.19799/j.cnki.2095-4239.2023.0510
• Energy Storage Test: Methods and Evaluation • Previous Articles Next Articles
Chen GENG1(), Jinhao MENG1(), Qiao PENG1, Tianqi LIU1, Xueyang ZENG2, Gang CHEN2
Received:
2023-07-27
Revised:
2023-08-08
Online:
2023-11-05
Published:
2023-11-16
Contact:
Jinhao MENG
E-mail:gchyc1206@163.com;jinhao@scu.edu.cn
CLC Number:
Chen GENG, Jinhao MENG, Qiao PENG, Tianqi LIU, Xueyang ZENG, Gang CHEN. Estimation of the state of health of lithium-ion batteries based on feature extraction of the relaxation process[J]. Energy Storage Science and Technology, 2023, 12(11): 3479-3487.
1 | 姚芳, 田家益, 黄凯. 锂电池组健康状态计算方法综述[J]. 电源技术, 2018, 42(1): 135-138. |
YAO F, TIAN J Y, HUANG K. Review of state of health calculation method for lithium battery[J]. Chinese Journal of Power Sources, 2018, 42(1): 135-138. | |
2 | 杨杰, 王婷, 杜春雨, 等. 锂离子电池模型研究综述[J]. 储能科学与技术, 2019, 8(1): 58-64. |
YANG J, WANG T, DU C Y, et al. Overview of the modeling of lithium-ion batteries[J]. Energy Storage Science and Technology, 2019, 8(1): 58-64. | |
3 | 吴小慧, 张兴敢. 锂电池二阶RC等效电路模型参数辨识[J]. 南京大学学报(自然科学), 2020, 56(5): 754-761. |
WU X H, ZHANG X G. Parameters identification of second order RC equivalent circuit model for lithium batteries[J]. Journal of Nanjing University (Natural Science), 2020, 56(5): 754-761. | |
4 | 林玉珍. 车用锂离子动力电池电化学-热耦合模型及SOC/SOH估计方法研究[D]. 镇江: 江苏大学, 2020. |
LIN Y Z. SOC and SOH estimation of lithium-ion battery based on A coupled electrochemical-thermal model[D]. Zhenjiang: Jiangsu University, 2020. | |
5 | 郑超逸. 基于遗传粒子滤波算法的动力锂电池状态研究[D]. 合肥: 合肥工业大学, 2021. |
ZHENG C Y. Research on the power lithium battery state based on genetic particle filter algorithm[D]. Hefei: Hefei University of Technology, 2021. | |
6 | 张立强. 锂离子电池多物理模型参数辨识及健康特征提取[D]. 哈尔滨: 哈尔滨工业大学, 2015. |
ZHANG L Q. Parameter identification of the multi-physics model and health feature extraction for lithium-ion battery[D]. Harbin: Harbin Institute of Technology, 2015. | |
7 | 李放, 闵永军, 张涌. 基于大数据的动力锂电池可靠性关键技术研究综述[J]. 储能科学与技术, 2023, 12(6): 1981-1994. |
LI F, MIN Y J, ZHANG Y. Review of key technology research on the reliability of power lithium batteries based on big data[J]. Energy Storage Science and Technology, 2023, 12(6): 1981-1994. | |
8 | 何浩然, 丁稳房, 吴铁洲, 等. 基于IGA-BP神经网络的锂电池健康状态估算[J]. 电源技术, 2022, 46(1): 78-82. |
HE H R, DING W F, WU T Z, et al. SOH estimation of lithium battery based on IGA-BP neural network[J]. Chinese Journal of Power Sources, 2022, 46(1): 78-82. | |
9 | HU C, YOUN B D, WANG P F, et al. Ensemble of data-driven prognostic algorithms for robust prediction of remaining useful life[J]. Reliability Engineering & System Safety, 2012, 103: 120-135. |
10 | 刘伟霞, 田勋, 肖家勇, 等. 基于混合模型及LSTM的锂电池SOH与剩余寿命预测[J]. 储能科学与技术, 2021, 10(2): 689-694. |
LIU W X, TIAN X, XIAO J Y, et al. Estimation of SOH and remaining life of lithium batteries based on a combination model and long short-term memory[J]. Energy Storage Science and Technology, 2021, 10(2): 689-694. | |
11 | 王英楷, 张红, 王星辉. 基于1DCNN-LSTM的锂离子电池SOH预测[J]. 储能科学与技术, 2022, 11(1): 240-245. |
WANG Y K, ZHANG H, WANG X H. Hybrid 1DCNN-LSTM model for predicting lithium ion battery state of health[J]. Energy Storage Science and Technology, 2022, 11(1): 240-245. | |
12 | 周頔, 宋显华, 卢文斌, 等. 基于日常片段充电数据的锂电池健康状态实时评估方法研究[J]. 中国电机工程学报, 2019, 39(1): 105-111, 325. |
ZHOU D, SONG X H, LU W B, et al. Real-time SOH estimation algorithm for lithium-ion batteries based on daily segment charging data[J]. Proceedings of the CSEE, 2019, 39(1): 105-111, 325. | |
13 | 王巍. 基于稀疏高斯过程回归的锂电池剩余寿命预测[D]. 北京: 北京交通大学, 2018. |
WANG W. Remaining useful life prediction for lithium-ion battery based on sparse Gaussian process regression[D]. Beijing: Beijing Jiaotong University, 2018. | |
14 | 廖力, 肖廷奕, 吴铁洲, 等. 基于多健康特征融合的锂电池SOH和RUL预测[J]. 电源技术, 2023, 47(2): 193-198. |
LIAO L, XIAO T Y, WU T Z, et al. SOH and RUL prediction for lithium batteries based on fusion of multiple health features[J]. Chinese Journal of Power Sources, 2023, 47(2): 193-198. | |
15 | 王萍, 范凌峰, 程泽. 基于健康特征参数的锂离子电池SOH和RUL联合估计方法[J]. 中国电机工程学报, 2022, 42(4): 1523-1534. |
WANG P, FAN L F, CHENG Z. A joint state of health and remaining useful life estimation approach for lithium-ion batteries based on health factor parameter[J]. Proceedings of the CSEE, 2022, 42(4): 1523-1534. | |
16 | ZHENG L F, ZHU J G, LU D D C, et al. Incremental capacity analysis and differential voltage analysis based state of charge and capacity estimation for lithium-ion batteries[J]. Energy, 2018, 150: 759-769. |
17 | 周才杰, 汪玉洁, 李凯铨, 等. 基于灰色关联度分析-长短期记忆神经网络的锂离子电池健康状态估计[J]. 电工技术学报, 2022, 37(23): 6065-6073. |
ZHOU C J, WANG Y J, LI K Q, et al. State of health estimation for lithium-ion battery based on gray correlation analysis and long short-term memory neural network[J]. Transactions of China Electrotechnical Society, 2022, 37(23): 6065-6073. | |
18 | 孙广明, 贾新羽, 陈良亮. 基于K近邻回归的锂离子电池健康状态估计[J]. 电源技术, 2022, 46(8): 872-875. |
SUN G M, JIA X Y, CHEN L L. State of health estimation of lithium-ion battery based on K nearest neighbour regression and IC curve[J]. Chinese Journal of Power Sources, 2022, 46(8): 872-875. | |
19 | LI A, PELISSIER S, VENET P, et al. Fast characterization method for modeling battery relaxation voltage[J]. Batteries, 2016, 2(2): 7. |
20 | ZHU J G, WANG Y X, HUANG Y, et al. Data-driven capacity estimation of commercial lithium-ion batteries from voltage relaxation[J]. Nature Communications, 2022, 13: 2261. |
21 | FANG Q H, WEI X Z, LU T Y, et al. A state of health estimation method for lithium-ion batteries based on voltage relaxation model[J]. Energies, 2019, 12(7): 1349. |
22 | 郑伟博, 张纪会. 基于Nelder-Mead单纯形法的改进量子行为粒子群算法[J]. 复杂系统与复杂性科学, 2016, 13(2): 97-104. |
ZHENG W B, ZHANG J H. A improved quantum behaved particle swarm optimization algorithm using nelder and mead's simplex algorithm[J]. Complex Systems and Complexity Science, 2016, 13(2): 97-104. |
[1] | Shaohong ZENG, Weixiong WU, Jizhen LIU, Shuangfeng WANG, Shifeng YE, Zhenyu FENG. A review of research on immersion cooling technology for lithium-ion batteries [J]. Energy Storage Science and Technology, 2023, 12(9): 2888-2903. |
[2] | Jiwei LI, Ruihan LIU, Taolin LU, Long PAN, Changjun MA, Qingbo LI, Zhiyun ZHAO, Wen YANG, Jingying XIE. Early fault diagnosis of lithium-ion battery packs based on improved local outlier detection and standard deviation method [J]. Energy Storage Science and Technology, 2023, 12(9): 2917-2926. |
[3] | Xin CHEN, Yunwu LI, Xincheng LIANG, Falin LI, Zhidong ZHANG. Battery health state estimation of combined Transformer-GRU based on modal decomposition [J]. Energy Storage Science and Technology, 2023, 12(9): 2927-2936. |
[4] | Xiangyang ZHOU, Yingjie HU, Jiahao LIANG, Qijie ZHOU, Kang WEN, Song CHEN, Juan YANG, Jingjing TANG. Preparation and lithium storage characteristics of high-performance anode materials based on spheroidized tailings of natural flake graphite [J]. Energy Storage Science and Technology, 2023, 12(9): 2767-2777. |
[5] | Wanwei JIANG, Chengjing LIANG, Li QIAN, Meicheng LIU, Mengxiang ZHU, Jun MA. Regulating tin-based three-dimensional graphene foam and its performance as a lithium-ion battery anode [J]. Energy Storage Science and Technology, 2023, 12(9): 2746-2751. |
[6] | Anhao ZUO, Ruqing FANG, Zhe LI. Kinetic characterization of electrode materials for lithium-ion batteries via single-particle microelectrodes [J]. Energy Storage Science and Technology, 2023, 12(8): 2457-2481. |
[7] | Jiaxing YANG, Hengyun ZHANG, Yidong XU. Heat generation analysis for lithium-ion battery components using electrochemical and thermal coupled model [J]. Energy Storage Science and Technology, 2023, 12(8): 2615-2625. |
[8] | Jilu ZHANG, Yuchen DONG, Qiang SONG, Siming YUAN, Xiaodong GUO. Controllable synthesis and electrochemical mechanism related to polycrystalline and single-crystalline Ni-rich layered LiNi0.9Co0.05Mn0.05O2 cathode materials [J]. Energy Storage Science and Technology, 2023, 12(8): 2382-2389. |
[9] | Yu GUO, Yiwei WANG, Juan ZHONG, Jinqiao DU, Jie TIAN, Yan LI, Fangming JIANG. Fault diagnosis method for microinternal short circuits in lithium-ion batteries based on incremental capacity curve [J]. Energy Storage Science and Technology, 2023, 12(8): 2536-2546. |
[10] | Qingsong ZHANG, Fangwei BAO, Jiangjao NIU. Risk analysis method of thermal runaway gas explosion in lithium-ion batteries [J]. Energy Storage Science and Technology, 2023, 12(7): 2263-2270. |
[11] | Maosong FAN, Mengmeng GENG, Guangjin ZHAO, Kai YANG, Fangfang WANG, Hao LIU. Research on battery sorting technology for echelon utilization based on multifrequency impedance [J]. Energy Storage Science and Technology, 2023, 12(7): 2202-2210. |
[12] | Yi WANG, Xuebing CHEN, Yuanxi WANG, Jieyun ZHENG, Xiaosong LIU, Hong LI. Overview of multilevel failure mechanism and analysis technology of energy storage lithium-ion batteries [J]. Energy Storage Science and Technology, 2023, 12(7): 2079-2094. |
[13] | Yubo ZHANG, Youyuan WANG, Dongning HUANG, Ziyi WANG, Weigen CHEN. Prognostic method of lithium-ion battery lifetime degradation under various working conditions [J]. Energy Storage Science and Technology, 2023, 12(7): 2238-2245. |
[14] | Qinpei CHEN, Xuehui WANG, Wenzhong MI. Experiential study on the toxic and explosive characteristics of thermal runaway gas generated in electric-vehicle lithium-ion battery systems [J]. Energy Storage Science and Technology, 2023, 12(7): 2256-2262. |
[15] | Wenda ZAN, Rui ZHANG, Fei DING. Development and application of electrochemical models for lithium-ion batteries [J]. Energy Storage Science and Technology, 2023, 12(7): 2302-2318. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||