Energy Storage Science and Technology ›› 2025, Vol. 14 ›› Issue (10): 3657-3665.doi: 10.19799/j.cnki.2095-4239.2025.0298
• Energy Storage Materials and Devices • Previous Articles Next Articles
Ronghan QIAO1(
), Lin SANG2, Zhongyang ZHANG3, Xiayin YAO1(
), Xingjiang LIU2(
), Hailong YU3
Received:2025-03-27
Revised:2025-04-11
Online:2025-10-28
Published:2025-10-20
Contact:
Xiayin YAO, Xingjiang LIU
E-mail:qiaoronghan@nimte.ac.cn;yaoxy@nimte.ac.cn;xjliu@nklps.org
CLC Number:
Ronghan QIAO, Lin SANG, Zhongyang ZHANG, Xiayin YAO, Xingjiang LIU, Hailong YU. Graphite vs. lithium metal anodes: Safety of hybrid solid-liquid lithium batteries under short circuit and nail penetration[J]. Energy Storage Science and Technology, 2025, 14(10): 3657-3665.
| [1] | 中国汽车工业协会, 中国汽车工程研究院股份有限公司, 一汽解放集团股份有限公司. 中国商用汽车产业发展报告(2024)[M]. 北京: 社会科学文献出版社, 2024. |
| [2] | GOODENOUGH J B, KIM Y. Challenges for rechargeable Li batteries[J]. Chemistry of Materials, 2010, 22(3): 587-603. DOI: 10.1021/cm901452z. |
| [3] | 王莉, 谢乐琼, 田光宇, 等. 锂离子电池安全事故: 安全性问题,还是可靠性问题[J]. 储能科学与技术, 2021, 10(1): 1-6. DOI: 10.19799/j.cnki.2095-4239.2020.0345. |
| WANG L, XIE L Q, TIAN G Y, et al. Safety accidents of Li-ion batteries: Reliability issues or safety issues[J]. Energy Storage Science and Technology, 2021, 10(1): 1-6. DOI: 10.19799/j.cnki. 2095-4239.2020.0345. | |
| [4] | FENG X N, OUYANG M G, LIU X, et al. Thermal runaway mechanism of lithium ion battery for electric vehicles: A review[J]. Energy Storage Materials, 2018, 10: 246-267. DOI: 10.1016/j.ensm.2017.05.013. |
| [5] | 靳欣, 张建茹, 王其钰, 等. 混合固液锂离子电池的热失控行为研究[J]. 储能科学与技术, 2024, 13(1): 48-56. DOI: 10.19799/j.cnki.2095-4239.2023.0846. |
| JIN X, ZHANG J R, WANG Q Y, et al. Study on thermal runaway of hybrid solid-liquid batteries[J]. Energy Storage Science and Technology, 2024, 13(1): 48-56. DOI: 10.19799/j.cnki.2095-4239.2023.0846. | |
| [6] | OUYANG D X, CHEN M Y, HUANG Q, et al. A review on the thermal hazards of the lithium-ion battery and the corresponding countermeasures[J]. Applied Sciences, 2019, 9(12): 2483. DOI: 10.3390/app9122483. |
| [7] | SPOTNITZ R, FRANKLIN J. Abuse behavior of high-power, lithium-ion cells[J]. Journal of Power Sources, 2003, 113(1): 81-100. DOI: 10.1016/S0378-7753(02)00488-3. |
| [8] | 田君, 田崔钧, 王一拓, 等. 锂离子电池安全性测试与评价方法分析[J]. 储能科学与技术, 2018, 7(6): 1128-1134. DOI: 10.12028/j.issn.2095-4239.2018.0154. |
| TIAN J, TIAN C J, WANG Y T, et al. Safety test and evaluation method of lithium ion battery[J]. Energy Storage Science and Technology, 2018, 7(6): 1128-1134. DOI: 10.12028/j.issn.2095-4239.2018.0154. | |
| [9] | 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 电动汽车用动力蓄电池安全要求及试验方法: GB/T 31485—2015[S]. 北京: 中国标准出版社, 2015. |
| [10] | CHENG X B, ZHANG R, ZHAO C Z, et al. Toward safe lithium metal anode in rechargeable batteries: A review[J]. Chemical Reviews, 2017, 117(15): 10403-10473. DOI: 10.1021/acs.chemrev. 7b00115. |
| [11] | ZHANG H, YANG Y, REN D S, et al. Graphite as anode materials: Fundamental mechanism, recent progress and advances[J]. Energy Storage Materials, 2021, 36: 147-170. DOI: 10.1016/j.ensm.2020.12.027. |
| [12] | 李启全. 锂电池安全测试分析[J]. 电池工业, 2017, 21(2): 4-6. DOI: 10.3969/j.issn.1008-7923.2017.02.002. |
| LI Q Q. Safety test of lithium battery[J]. Chinese Battery Industry, 2017, 21(2): 4-6. DOI: 10.3969/j.issn.1008-7923.2017.02.002. | |
| [13] | LIU B, ZHANG J G, XU W. Advancing lithium metal batteries[J]. Joule, 2018, 2(5): 833-845. DOI: 10.1016/j.joule.2018.03.008. |
| [14] | GAO M D, LI H, XU L, et al. Lithium metal batteries for high energy density: Fundamental electrochemistry and challenges[J]. Journal of Energy Chemistry, 2021, 59: 666-687. DOI: 10.1016/j.jechem.2020.11.034. |
| [15] | ZHANG S S. A review on electrolyte additives for lithium-ion batteries[J]. Journal of Power Sources, 2006, 162(2): 1379-1394. DOI: 10.1016/j.jpowsour.2006.07.074. |
| [16] | YUE X Y, MA C, BAO J, et al. Failure mechanisms of lithium metal anode and their advanced characterization technologies[J]. Acta Physico Chimica Sinica, 2020, 37(2): DOI: 10.3866/pku.whxb202005012. |
| [17] | LAMB J, ORENDORFF C J, ROTH E P, et al. Studies on the thermal breakdown of common Li-ion battery electrolyte components[J]. Journal of the Electrochemical Society, 2015, 162(10): A2131-A2135. DOI: 10.1149/2.0651510jes. |
| [18] | 张世超, 沈泽宇, 陆盈盈. 金属锂电池的热失控与安全性研究进展[J]. 物理化学学报, 2021, 37(1): 61-78. DOI: 10.3866/PKU.WHXB 202008065. |
| ZHANG S C, SHEN Z Y, LU Y Y. Research progress of thermal runaway and safety for lithium metal batteries[J]. Acta Physico-Chimica Sinica, 2021, 37(1): 61-78. DOI: 10.3866/PKU.WHXB 202008065. | |
| [19] | CAI T, PANNALA S, STEFANOPOULOU A G, et al. Battery internal short detection methodology using cell swelling measurements[C]//2020 American Control Conference (ACC). July 1-3, 2020, Denver, CO, USA. IEEE, 2020: 1143-1148. |
| [20] | JIA L Z, WANG D, YIN T, et al. Experimental study on thermal-induced runaway in high nickel ternary batteries[J]. ACS Omega, 2022, 7(17): 14562-14570. DOI: 10.1021/acsomega.1c06495. |
| [21] | ZHANG Y Y, HEIM F M, SONG N N, et al. New insights into mossy Li induced anode degradation and its formation mechanism in Li-S batteries[J]. Acs Energy Letters, 2017, 2(12): 2696-2705. DOI: 10.1021/acsenergylett.7b00886. |
| [22] | 梁宏毅, 王媛, 甘友毅, 等. 三元动力锂离子电池内短路热失控残骸的特征[J]. 电池, 2024, 54(4): 487-491.DOI:10.19535/j.1001-1579.2024.04.010. |
| LIANG H Y, WANG Y, GAN Y Y,et al. Characteristics of residue of ternary Li-ion traction battery induced by internal short-circuit[J]. Dianchi(Battery Bimonthly), 2024, 54(4): 487-491. DOI:10.19535/j.1001-1579.2024.04.010. | |
| [23] | HILDEBRAND J H, LAMOREAUX R H. Viscosity of liquid metals: An interpretation[J]. Proceedings of the National Academy of Sciences of the United States of America, 1976, 73(4): 988-989. DOI: 10.1073/pnas.73.4.988. |
| [24] | LI Z, HUANG J, YANN LIAW B, et al. A review of lithium deposition in lithium-ion and lithium metal secondary batteries[J]. Journal of Power Sources, 2014, 254: 168-182. DOI: 10.1016/j.jpowsour.2013.12.099. |
| [25] | BAI W, XIAO L, LONG T, et al. Fire-retardant and thermally conductive polyacrylonitrile-based separators enabling the safety of lithium-ion batteries[J]. Journal of Colloid and Interface Science, 2025, 684: 377-387. DOI: 10.1016/j.jcis.2024.12.229. |
| [1] | Ye CHEN, Jin LI, Ruilani ZHAO, Shaoyu ZHANG, Yuxi CHU, Kang YANG, Xiaoxue LIAO, Bo JIANG, Ping ZHUO. Comparative experimental study on thermal runaway propagation of battery modules under different states of charge [J]. Energy Storage Science and Technology, 2025, 14(9): 3402-3413. |
| [2] | Xiuwen TAN, Ling LI. Study on the thermal runaway characteristics of lithium-ion batteries and their thermal management under local overheating conditions [J]. Energy Storage Science and Technology, 2025, 14(9): 3521-3529. |
| [3] | Wenyan CHEN, Ruilin HE, Jian CHANG, Yonghong DENG. Investigation of lithium storage mechanisms in liquid metal electrodes with different morphologies [J]. Energy Storage Science and Technology, 2025, 14(9): 3290-3300. |
| [4] | Yan ZHAO, Hao LIU, Zonglin YI, Li LI, Lijing XIE, Fangyuan SU. Interfacial behavior of FEC and VC at graphite anode of lithium-ion batteries [J]. Energy Storage Science and Technology, 2025, 14(9): 3249-3258. |
| [5] | Jijin LIN, Qian LIU, Tao QU, Jingkun LI, Dongyong HUANG, Xiaoqing ZHU, Xing JU. Technical and economic analysis of liquid immersion cooling for lithium-ion battery energy storage system [J]. Energy Storage Science and Technology, 2025, 14(9): 3622-3635. |
| [6] | Yuxi CHU, Chang MA, Hongguang CHEN, Shaoyu ZHANG, Ping ZHUO. Thermal runaway and gas production characteristics of a 180 Ah sodium-ion battery [J]. Energy Storage Science and Technology, 2025, 14(9): 3611-3618. |
| [7] | Chengshan XU, Han LI, Yan WANG, Languang LU, Xuning FENG, Minggao OUYANG. Research on fire propagation characteristics and energy transfer mechanisms during the triggering process in double-layer energy storage batteries [J]. Energy Storage Science and Technology, 2025, 14(9): 3552-3563. |
| [8] | Mingxuan LIU, Wentao CHEN, Shaopeng SHEN, Shijie ZHANG, zhen WEI, Biao MA, Danhua LI, Shiqiang LIU, Fang WANG. Research on accelerated aging and safety characteristics of lithium-ion batteries for energy storage [J]. Energy Storage Science and Technology, 2025, 14(9): 3530-3537. |
| [9] | Juqiang FENG, Chengzhi ZHANG, Yuhang CHEN. A high-precision SOC and temperature joint estimation method based on rapid prototype modeling [J]. Energy Storage Science and Technology, 2025, 14(9): 3567-3580. |
| [10] | Xiaoyu BAI, Yajing YAN, Zhirong ZHANG, Lingli KONG. Research on the performance of composite graphite lithium-ion batteries [J]. Energy Storage Science and Technology, 2025, 14(9): 3259-3268. |
| [11] | Lei ZHANG. Operating status monitoring and evaluation of lithium-ion battery energy storage power stations [J]. Energy Storage Science and Technology, 2025, 14(9): 3538-3540. |
| [12] | Xinyu BAO, Xiangdong KONG, Taolin LV, Zhicheng ZHU, Xuebing HAN, Xin LAI, Yuejiu ZHENG, Tao SUN. Battery internal resistance prediction and rapid sorting method based on production line big data [J]. Energy Storage Science and Technology, 2025, 14(9): 3541-3551. |
| [13] | Bin YANG, Jun YANG, Lang XU, Haowei WEN, Dengfeng LIU, Dianbo RUAN. Ball-head indentation-induced safety evaluation of capacitive lithium-ion batteries [J]. Energy Storage Science and Technology, 2025, 14(8): 3090-3099. |
| [14] | Chengshan XU, Ye SUN, Zhikai YANG, Mingqiang ZHAO, Yalun LI, Xuning FENG, Hewu WANG, Languang LU, Minggao OUYANG. Research progress on arc induced by thermal runaway in lithium-ion battery systems for energy storage [J]. Energy Storage Science and Technology, 2025, 14(8): 3037-3050. |
| [15] | Pengju LI, Xiaoyu CHEN, Jia XIE, Jiani SHEN, Yijun HE. Research progress on state of power prediction methods for lithium-ion batteries [J]. Energy Storage Science and Technology, 2025, 14(8): 3028-3036. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||