Energy Storage Science and Technology
Jijin LIN1(), Qian LIU1, Tao QU2, Jingkun LI2, Dongyong HUANG2, Xiaoqing ZHU1, Xing JU1(
)
Received:
2025-03-03
Revised:
2025-04-07
Contact:
Xing JU
E-mail:120242202501@ncepu.edu.cn;scottju@ncepu.edu.cn
CLC Number:
Jijin LIN, Qian LIU, Tao QU, Jingkun LI, Dongyong HUANG, Xiaoqing ZHU, Xing JU. Technical and economic analysis of liquid immersion cooling for lithium-ion battery energy storage system[J]. Energy Storage Science and Technology, doi: 10.19799/j.cnki.2095-4239.2025.0203.
Table 2
Calculation formula and results of each physical quantity of energy storage container[11-14]"
项目 | 符号 | 计算公式 | 值 |
---|---|---|---|
电池集装箱的发热功率 | P1 | 43,200 W | |
电池集装箱的温升热量 | Qx | 91,584 kJ | |
电池集装箱的冷却功率 | P2x | 39,624 W | |
当量天空温度 | ts | 24 °C | |
太阳辐射当量温度 | tsol,eq | 48.35 °C | |
辐射换热系数 | αer | 5.0 | |
天空辐射当量温度 | tsky,eq | 7.85 °C | |
天空辐射修正系数 | ε | 7.75 | |
辐射净输入热量 | Pnet | 5,900 W | |
电池集装箱总发热量 | P | 48,826 W |
Table 3
The meanings and values of symbols in Table 2[11-14]"
符号 | 含义 | 数值/单位 |
---|---|---|
P1 | 电池集装箱的发热功率 | 43,200 W |
C | 电池的比热容 | 1 kJ/(kg·K) |
m | 电池质量 | 5.3 kg |
Δt1 | 电池温升 | 5 °C |
k | 安全系数 | 1.3 |
t2 | 充放电时间 | 2h |
te | 室外干球温度 | 34 °C |
ρ | 外表面的太阳辐射吸收系数 | 0.25 |
IH | 水平面的太阳辐射照度 | 967 W/m2 |
αe | 外部对流换热系数 | 5 W/(m2·K) |
ε | 半球发射率 | 0.8 |
CH | 低云量修正系数 | 0.68 |
H | 低云量昼夜平均值 | 0.13 |
CM | 中云量修正系数 | 0.47 |
M | 中云量昼夜平均值 | 0.27 |
ti | 室内干球温度 | 28 °C |
KT | 集装箱的换热系数 | 2.3461 W/(m2·K) |
S | 箱体换热面积 | 67.07 m2 |
Δt2 | 箱体内外温差 | 30 °C |
Table 5
Comparison of cost differences of immersion cooling energy storage system (CNYx10,000) [15-18]"
整包浸没的 储能柜系统 | 整簇浸没的 储能柜系统 | 整包浸没的 储能集装箱系统 | 整簇浸没的 储能集装箱系统 | |
---|---|---|---|---|
电池模组 | 12.49 | 11.99 | 260.20 | 241.50 |
储能逆变器(PCS) | 1.86 | 1.79 | 38.84 | 36.04 |
能量管理系统(EMS) | 0.37 | 0.36 | 7.77 | 7.21 |
变压器 | 1.12 | 1.07 | 23.30 | 21.63 |
组装成本 | 0.56 | 0.54 | 11.65 | 10.81 |
电缆 | 0.56 | 0.54 | 11.65 | 10.81 |
电池管理系统(BMS) | 1.68 | 1.61 | 34.95 | 32.44 |
浸没液(碳氢浸没液) | 1.75 | 2.50 | 21.00 | 40.00 |
热管理回路 | 1.13 | 1.03 | 11.06 | 9.20 |
总价 | 21.51 | 21.42 | 420.42 | 409.64 |
1 | 卢乙彬,邵双全,蔡贵立.基于浸没式液冷技术的储能电池仿真与理论研究[J].电信工程技术与标准化,2023,36(S1):134-138.DOI:10.13992/j.cnki.tetas.2023.s1.034. |
RU Y B,SHAO S Q,CAI G L. Simulation and theoretical research on energy storage battery based on submerged liquid cooling technology [J]. Telecom Engineering Technics and Standardization,2023,36(S1):134-138.DOI:10.13992/j.cnki.tetas.2023.s1.034. | |
2 | G. S,D. S R,V. G M, et al.Experimental investigation and comparative analysis of immersion cooling of lithium-ion batteries using mineral and therminol oil[J].Applied Thermal Engineering,2023,225. |
3 | Yang L,Minli B,Zhifu Z, et al.Experimental investigations of liquid immersion cooling for 18650 lithium-ion battery Pack under fast charging conditions[J].Applied Thermal Engineering,2023,227. |
4 | Yanhui L,Gulzhan A,Xinyan H, et al.Single-phase static immersion cooling for cylindrical lithium-ion battery module[J].Applied Thermal Engineering,2023,233. |
5 | 王国阳,赵路遥,孔庆红等.基于浸没冷却的锂离子电池热管理性能研究[J].电源技术,2022,46(04):408-411. |
WANG G Y,ZHAO L Y,KONG Q H,et al. Research on thermal management performance of Li-ion battery based on immersion cooling [J]. Chinese Journal of Power Sources,2022,46(04):408-411. | |
6 | Chiu K C, Lin C H, Yeh S F,et al.Cycle life analysis of series connected lithium-ion batteries with temperature difference[J].Journal of Power Sources, 2014, 263(oct.1):75-84.DOI:10.1016/j.jpowsour.2014.04.034. |
7 | 辛甜,高啸天,肖楷,等.使用工况对锂离子电池电化学性能的影响[J].南方能源建设,2024,11(02):139-145.DOI:10.16516/j.ceec.2024.2.13. |
XING T,GAO X T,XIAO K,et al. Influence of Service Conditions on Electrochemical Performance of Lithium-Ion Batteries [J]. Southern Energy Construction,2024,11(02):139-145.DOI:10.16516/j.ceec.2024.2.13. | |
8 | Matsuda T,Ando K,Myojin M, et al.Investigation of the influence of temperature on the degradation mechanism of commercial nickel manganese cobalt oxide-type lithium-ion cells during long-term cycle tests[J].Journal of Energy Storage,2019,21665-671. |
9 | 曾少鸿,吴伟雄,刘吉臻,等.锂离子电池浸没式冷却技术研究综述[J].储能科学与技术, 2023, 12(9):2888-2903.DOI:10.19799/j.cnki.2095-4239.2023.0269. |
ZENG S H,WU W X,LIU J Z,et al. A review of research on immersion cooling technology for lithium-ion batteries [J]. Energy Storage Science and Technology, 2023, 12(9):2888-2903.DOI:10.19799/j.cnki.2095-4239.2023.0269. | |
10 | 索克兰,程林,许鹤麟,等.提升电池储能系统经济性研究方法综述[J].全球能源互联网,2023,6(02):163-178.DOI:10.19705/j.cnki.issn2096-5125.2023.02.007. |
SUO K L,CHENG L,XU H L,et al. A Review of Research Methods for Improving the Economy of Battery Energy Storage System [J]. Journal of Global Energy Interconnection,2023,6(02):163-178.DOI:10.19705/j.cnki.issn2096-5125.2023.02.007. | |
11 | Yang C,Liu Q,Liu M, et al.Investigation of the immersion cooling system for 280Ah LiFePO4 batteries: Effects of flow layouts and fluid types[J].Case Studies in Thermal Engineering,2024,61104922-104922. |
12 | 彭畅,刘静远,屈美玲,等.大规模储能电站热仿真模型构建[J].电力与能源进展,2024(001):012.DOI:10.12677/AEPE.2024.121002. |
13 | PENG C,LIU J Y,QU M L,et al. Construction of Thermal Simulation Model of Large-Scale Energy Storage Power Station [J]. Advances in Energy and Power Engineering,2024(001):012.DOI:10.12677/AEPE.2024.121002. |
14 | 田慧峰,曹伟武.反射隔热涂料热工计算方法研究[J].建筑节能,2010,38(10):55-57. |
TIANH F,CAO W W. Thermal Calculation Method of Reflecting Heat Insulating Coatings [J]. Journal of Building Energy Efficiency,2010,38(10):55-57. | |
15 | 北极星储能网.价格创新低!储能系统0.638元/Wh、锂电池139美元/kWh,还要继续跌![EB/OL]. https://news.bjx.com.cn/html/20231130/1346856.shtml,2023-11-30/2024-05-01. |
16 | 艾邦储能网. 2023储能盘点:储能系统和EPC价格全景分析[EB/OL]. https://www.aibanges.com/a/9651,2024-01-18/2024-05-01. |
17 | 中国储能网. 2月储能系统破0.6元/Wh大关,4h储能系统成为主力军[EB/OL]. https://www.escn.com.cn/20240304/4ab5891ee14a4cb5a10e4edc256fa18b/c.html,2024-03-04/2024-05-01. |
18 | 何颖源,陈永翀,刘勇,等.储能的度电成本和里程成本分析[J].电工电能新技术,2019,38(09):1-10. |
HE Y Y,CHEN Y C,LIU Y,et al. Analysis of cost per kilowatt-hour and cost per mileage for energy storage technologies [J]. Advanced Technology of Electrical Engineering and Energy,2019,38(09):1-10. | |
19 | 薛颖慧.K电化学储能电站运营经济性分析及优化策略[D].华北电力大学(北京),2023.DOI:10.27140/d.cnki.ghbbu.2023.000466. |
XUE Y W. Operation economy analysis and optimization strategy of K electrochemical energy storage power station[D]. North China Electric Power University (Beijing),2023.DOI:10.27140/d.cnki.ghbbu.2023.000466. | |
20 | 北极星储能网. 储能电池热管理系统液冷和风冷优劣势分析及应用场景探讨[EB/OL]. https://news.bjx.com.cn/html/20220505/1222519.shtml,2022-05-05/2024-04-19. |
21 | Goldman Sachs. Batteries: The Greenflation Challenge II: Raising battery price forecasts; addressing six key investor debates [R/OL]. (2022-06-22) [2025-03-17]. https://www.goldmansachs.com/insights/goldman-sachs-research/batteries-the-greenflation-challenge-2 |
22 | Goldman Sachs. Battery Metals Watch: The End of the Beginning [R/OL]. (2022-06-01) [2025-03-17]. https://www.goldmansachs.com/insights/goldman-sachs-research/battery-metals-watch-the-end-of-the-beginning. |
23 | 赵光金,李博文,胡玉霞,等.退役动力电池梯次利用技术及工程应用概述[J].储能科学与技术, 2023, 12(7):2319-2332.DOI:10.19799/j.cnki.2095-4239.2023.0288. |
ZHAO G J,LI B W,HU Y X,et al. Overview of the echelon utilization technology and engineering application of retired power batteries [J]. Energy Storage Science and Technology 2023, 12(7):2319-2332.DOI:10.19799/j.cnki.2095-4239.2023.0288. |
[1] | Yuehao CHEN, Sha CHEN, Huilan CHEN, Xiaoqin SUN, Yongqiang LUO. Simulation study on cooling performance of immersion liquid cooling systems for energy-storage battery packs [J]. Energy Storage Science and Technology, 2025, 14(2): 648-658. |
[2] | Lei WANG, Ruitao YAN, Fan ZHANG, Na YAN, Fen YUE, Xu FU, Mengchen LIU, Yunzhang YANG. Economic analysis of independent energy-storage project participation based on the optimization model of in-spot power market and primary frequency regulation markets [J]. Energy Storage Science and Technology, 2025, 14(2): 834-845. |
[3] | Qingshan WANG, Yan LI, Qun ZHANG, Decheng WANG. A comparative analysis for various scaled mechanical energy storage technologies applied to power systems with a high share of renewable energy sources [J]. Energy Storage Science and Technology, 2025, 14(2): 854-867. |
[4] | Qili LIN, Zhen CHEN, Xiaohu WANG, Hongxun QI, Wei WANG. Economic analysis of large-scale hydrogen energy storage based on the “electric-hydrogen-electric” process [J]. Energy Storage Science and Technology, 2024, 13(6): 2068-2077. |
[5] | Liugan ZHANG, Yingchi ZHOU, Wenbing SUN, Kai YE, Longxiang CHEN. Performance of precooled CAES system using ORC-VCR to recover compression heat [J]. Energy Storage Science and Technology, 2024, 13(2): 611-622. |
[6] | Wen DU, Junlei WANG, Yunfei XU, Shilong LI, Kun WANG. Techno-economic analysis for the preparation of Li-ion battery's ternary cathode material using flame spray pyrolysis [J]. Energy Storage Science and Technology, 2024, 13(1): 345-357. |
[7] | Shaohong ZENG, Weixiong WU, Jizhen LIU, Shuangfeng WANG, Shifeng YE, Zhenyu FENG. A review of research on immersion cooling technology for lithium-ion batteries [J]. Energy Storage Science and Technology, 2023, 12(9): 2888-2903. |
[8] | Weiling ZHANG, Han GU, Chao ZHANG, Ang GE, Yuanxu YING. Technical economic characteristics and development trends of compressed air energy storage [J]. Energy Storage Science and Technology, 2023, 12(4): 1295-1301. |
[9] | Fuchao LI, Mingbiao CHEN, Qun DU, Yongzhen CHEN, Wenji SONG, Wenye LIN, Ziping FENG. Research on in-situ remote offshore wind-power consumption based on ice-slurry cold storage [J]. Energy Storage Science and Technology, 2023, 12(12): 3730-3739. |
[10] | Jingqiang ZHANG, Haimin WANG, Nan LU. Temperature field characteristics of a small NCM811 traction battery module cooled by insulating oil immersion [J]. Energy Storage Science and Technology, 2022, 11(8): 2612-2619. |
[11] | ZHANG Ping, KANG Libin, WANG Mingju, ZHAO Guang, LUO Zhenhua, TANG Kun, LU Yaxiang, HU Yongsheng. Technology feasibility and economic analysis of Na-ion battery energy storage [J]. Energy Storage Science and Technology, 2022, 11(6): 1892-1901. |
[12] | Kai DING, Jian ZHENG, Wei LI, Zengrui HUANG, Yi WANG, Yimin QIAN, Zixuan ZHENG, Qi XIE. Hierarchical voltage sag mitigation scheme based on user-side energy storage systems and its economic analysis [J]. Energy Storage Science and Technology, 2022, 11(10): 3381-3390. |
[13] | Huihui YANG, Li ZENG, Bo TANG, Xiaoqing WANG, Yong LU. Experimental study on an EG/paraffin composite thermal storage material and its feasibility for off-peak power heating utilization [J]. Energy Storage Science and Technology, 2022, 11(1): 19-29. |
[14] | Dekun FU, Wenji SONG, Mingbiao CHEN, Ziping FENG. Techno-economic analysis of seasonal cold storage technology and its application in protected agriculture [J]. Energy Storage Science and Technology, 2021, 10(6): 2385-2391. |
[15] | Qihui YU, Li TIAN, Xiaofei LI, Xiaodong LI, Xin TAN, Yeming ZHANG. Compressed air energy storage capacity configuration and economic evaluation considering the uncertainty of wind energy [J]. Energy Storage Science and Technology, 2021, 10(5): 1614-1623. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||