Energy Storage Science and Technology ›› 2025, Vol. 14 ›› Issue (2): 854-867.doi: 10.19799/j.cnki.2095-4239.2024.0867
• Technical Economic Analysis of Energy Storage • Previous Articles Next Articles
Qingshan WANG1,2(), Yan LI1,2(
), Qun ZHANG1,2, Decheng WANG1,2
Received:
2024-09-14
Revised:
2024-11-20
Online:
2025-02-28
Published:
2025-03-18
Contact:
Yan LI
E-mail:wangqingshan16@163.com;liyan20211126@163.com
CLC Number:
Qingshan WANG, Yan LI, Qun ZHANG, Decheng WANG. A comparative analysis for various scaled mechanical energy storage technologies applied to power systems with a high share of renewable energy sources[J]. Energy Storage Science and Technology, 2025, 14(2): 854-867.
Table 1
Electrical characteristics of MES"
储能技术 | 抽水蓄能 | 压缩空气储能 | 飞轮储能 | 重力储能 |
---|---|---|---|---|
典型功率/MW | 100~2000[ | 50~300[ | 0.005~5[ | <100[ |
循环效率/% | 70~85[ | 50~75[ | 85~95[ | 80~90[ |
可放电时间 | 6~12 h[ | 4~24 h[ | 30s~15 min[ | 2~12 h[ |
能量密度/(Wh/L) | 0.5~1.5[ | 3~6[ | 0.45~424[ | — |
功率密度/(W/L) | 0.05~0.3[ | 0.5~2[ | 40~20000[ | — |
响应速度 | 分钟级[ | 分钟级[ | 毫秒级[ | 秒级[ |
特点 | 技术最成熟,响应慢,受地理限制 | 技术发展快,响应较慢 | 可高频次调节,寿命长,成本高 | 适应性强,寿命长,安全环保 |
1 | 康重庆, 姚良忠. 高比例可再生能源电力系统的关键科学问题与理论研究框架[J]. 电力系统自动化, 2017, 41(9): 2-11. DOI: 10.7500/AEPS20170120004. |
KANG C Q, YAO L Z. Key scientific issues and theoretical research framework for power systems with high proportion of renewable energy[J]. Automation of Electric Power Systems, 2017, 41(9): 2-11. DOI: 10.7500/AEPS20170120004. | |
2 | 康重庆, 杜尔顺, 李姚旺, 等. 新型电力系统的"碳视角": 科学问题与研究框架[J]. 电网技术, 2022, 46(3): 821-833. DOI: 10.13335/j.1000-3673.pst.2021.2550. |
KANG C Q, DU E S, LI Y W, et al. Key scientific problems and research framework for carbon perspective research of new power systems[J]. Power System Technology, 2022, 46(3): 821-833. DOI: 10.13335/j.1000-3673.pst.2021.2550. | |
3 | 张智刚, 康重庆. 碳中和目标下构建新型电力系统的挑战与展望[J]. 中国电机工程学报, 2022, 42(8): 2806-2819. DOI: 10.13334/j.0258-8013.pcsee.220467. |
ZHANG Z G, KANG C Q. Challenges and prospects for constructing the new-type power system towards a carbon neutrality future[J]. Proceedings of the CSEE, 2022, 42(8): 2806-2819. DOI: 10.13334/j.0258-8013.pcsee.220467. | |
4 | 唐西胜, 李伟, 沈晓东. 面向新型电力系统的储能规划方法研究进展及展望[J]. 电力系统自动化, 2024, 48(9): 178-191. DOI: 10.7500/AEPS20230821004 |
TANG X S, LI W, SHEN X D. Research progress and prospect of energy storage planning method for new power system[J]. Automation of Electric Power Systems, 2024, 48(9): 178-191. DOI: 10.7500/AEPS20230821004 | |
5 | ZHU H, LI H, LIU G J, et al. Energy storage in high variable renewable energy penetration power systems: Technologies and applications[J]. CSEE Journal of Power and Energy Systems, 2023, 9(6): 2099-2108. DOI:10.17775/CSEEJPES.2020.00090. |
6 | 代宇涵, 刘春, 周朋, 等. 双碳背景下电力系统储能技术的应用与研究进展[J]. 储能科学与技术, 2024, 13(8): 2772-2774. DOI: 10.19799/j.cnki.2095-4239.2024.0695. |
DAI Y H, LIU C, ZHOU P, et al. Application and research progress of energy storage technology in power systems under the dual carbon background[J]. Energy Storage Science and Technology, 2024, 13(8): 2772-2774. DOI: 10.19799/j.cnki.2095-4239.2024.0695. | |
7 | 胡娟, 杨水丽, 侯朝勇, 等. 规模化储能技术典型示范应用的现状分析与启示[J]. 电网技术, 2015, 39(4): 879-885. DOI: 10.13335/j.1000-3673.pst.2015.04.001. |
HU J, YANG S L, HOU C Y, et al. Present condition analysis on typical demonstration application of large-scale energy storage technology and its enlightenment[J]. Power System Technology, 2015, 39(4): 879-885. DOI: 10.13335/j.1000-3673.pst.2015.04.001. | |
8 | NIKOLAIDIS P, POULLIKKAS A. Cost metrics of electrical energy storage technologies in potential power system operations[J]. Sustainable Energy Technologies and Assessments, 2018, 25: 43-59. DOI:10.1016/j.seta.2017.12.001. |
9 | 国家电网公司"电网新技术前景研究" 项目咨询组. 大规模储能技术在电力系统中的应用前景分析[J]. 电力系统自动化, 2013, 37(1): 3-8, 30. DOI: 10.7500/AEPS201209150. |
Consulting Group of State Grid Corporation of China to Prospects of New Technologies in Power Systems. An analysis of prospects for application of large-scale energy storage technology in power systems[J]. Automation of Electric Power Systems, 2013, 37(1): 3-8, 30. DOI: 10.7500/AEPS201209150. | |
10 | ABDALLA A N, NAZIR M S, TAO H, et al. Integration of energy storage system and renewable energy sources based on artificial intelligence: An overview[J]. Journal of Energy Storage, 2021, 40: 102811. DOI:10.1016/j.est.2021.102811. |
11 | LUO X, WANG J H, DOONER M, et al. Overview of current development in electrical energy storage technologies and the application potential in power system operation[J]. Applied Energy, 2015, 137: 511-536. DOI:10.1016/j.apenergy. 2014.09.081. |
12 | AMIRANTE R, CASSONE E, DISTASO E, et al. Overview on recent developments in energy storage: Mechanical, electrochemical and hydrogen technologies[J]. Energy Conversion and Management, 2017, 132: 372-387. DOI:10.1016/j.enconman.2016.11.046. |
13 | ANEKE M, WANG M H. Energy storage technologies and real life applications–A state of the art review[J]. Applied Energy, 2016, 179: 350-377. DOI:10.1016/j.apenergy.2016.06.097. |
14 | VASUDEVAN K R, RAMACHANDARAMURTHY V K, VENUGOPAL G, et al. Variable speed pumped hydro storage: A review of converters, controls and energy management strategies[J]. Renewable and Sustainable Energy Reviews, 2021, 135: 110156. DOI:10.1016/j.rser.2020.110156. |
15 | MOUSAVI G S M, FARAJI F, MAJAZI A, et al. A comprehensive review of flywheel energy storage system technology[J]. Renewable and Sustainable Energy Reviews, 2017, 67: 477-490. DOI:10.1016/j.rser.2016.09.060. |
16 | OKAFOR C E, FOLLY K A. Mechanical energy storage systems and their applications in power systems[M/OL]//Energy storage applications in power systems. IntechOpen, 2023[2024-09-05]. https://www.intechopen.com/chapters/86953. |
17 | ZHANG Z Y, DING T, ZHOU Q, et al. A review of technologies and applications on versatile energy storage systems[J]. Renewable and Sustainable Energy Reviews, 2021, 148: 111263. DOI:10.1016/j.rser.2021.111263. |
18 | 谢小荣, 马宁嘉, 刘威, 等. 新型电力系统中储能应用功能的综述与展望[J]. 中国电机工程学报, 2023, 43(1): 158-168. DOI: 10.13334/j.0258-8013.pcsee.220025. |
XIE X R, MA N J, LIU W, et al. Functions of energy storage in renewable energy dominated power systems: Review and prospect[J]. Proceedings of the CSEE, 2023, 43(1): 158-168. DOI: 10.13334/j.0258-8013.pcsee.220025. | |
19 | OLABI A G, ONUMAEGBU C, WILBERFORCE T, et al. Critical review of energy storage systems[J]. Energy, 2021, 214: 118987. DOI:10.1016/j.energy.2020.118987. |
20 | YAO L Z, YANG B, CUI H F, et al. Challenges and progresses of energy storage technology and its application in power systems[J]. Journal of Modern Power Systems and Clean Energy, 2016, 4(4): 519-528. DOI:10.1007/s40565-016-0248-x. |
21 | BERRADA A, EMRANI A, AMEUR A. Life-cycle assessment of gravity energy storage systems for large-scale application[J]. Journal of Energy Storage, 2021, 40: 102825. DOI:10.1016/j.est.2021.102825. |
22 | 刘笑驰, 梅生伟, 丁若晨, 等. 压缩空气储能工程现状、发展趋势及应用展望[J]. 电力自动化设备, 2023, 43(10): 38-47, 102. DOI: 10.16081/j.epae.202309005. |
LIU X C, MEI S W, DING R C, et al. Current situation, development trend and application prospect of compressed air energy storage engineering projects[J]. Electric Power Automation Equipment, 2023, 43(10): 38-47, 102. DOI: 10.16081/j.epae.202309005. | |
23 | 何子睿, 齐伟, 宋锦涛, 等. 耦合液化天然气的液化空气储能系统热力学分析[J]. 储能科学与技术, 2021, 10(5): 1589-1596. DOI: 10.19799/j.cnki.2095-4239.2021.0184. |
HE Z R, QI W, SONG J T, et al. The thermodynamic analysis of a liquefied air energy storage system coupled with liquefied natural gas[J]. Energy Storage Science and Technology, 2021, 10(5): 1589-1596. DOI: 10.19799/j.cnki.2095-4239.2021.0184. | |
24 | 裴春兴, 王蓝, 王聪聪, 等. 电力系统储能应用场景研究综述[J]. 电气应用, 2022, 41(9): 1-8. |
PEI C X, WANG L, WANG C C, et al. Survey of application scenarios of energy storage in power system[J]. Electrotechnical Application, 2022, 41(9): 1-8. | |
25 | 陈海生, 李泓, 徐玉杰, 等. 2023年中国储能技术研究进展[J]. 储能科学与技术, 2024, 13(5): 1359-1397. DOI: 10.19799/j.cnki.2095-4239.2024.0441 |
CHEN H S, LI H, XU Y J, et al. Research progress on energy storage technologies of China in 2023[J]. Energy Storage Science and Technology, 2024, 13(5): 1359-1397. DOI: 10.19799/j.cnki.2095-4239.2024.0441 | |
26 | 中关村储能产业技术联盟. 双碳背景下发电侧储能综合价值评估及政策研究(简版)[R]. 北京: 中关村储能产业技术联盟, 2023. |
27 | TONG W X, LU Z G, CHEN W J, et al. Solid gravity energy storage: A review[J]. Journal of Energy Storage, 2022, 53: 105226. DOI:10.1016/j.est.2022.105226. |
28 | 中国投资协会. 零碳中国·新型储能蓝皮书[R]. 北京: 中国投资协会, 2022. |
29 | 李佳玉, 魏乐, 房方, 等. 飞轮储能控制技术及其在新型电力系统中的应用[J]. 中国科学: 技术科学, 2024, 54(6): 1003-1020. DOI: 10.1360/SST-2023-0158. |
LI J Y, WEI L, FANG F, et al. Control techniques of flywheel energy storage and its application in new power system[J]. Scientia Sinica (Technologica), 2024, 54(6): 1003-1020. DOI: 10.1360/SST-2023-0158. | |
30 | 翟文超, 姚良忠, 喻恒凝, 等. 面向并联环流最小化的垂直式矩阵型重力储能系统多机协调控制[J]. 全球能源互联网, 2024, 7(2): 155-165. DOI: 10.19705/j.cnki.issn2096-5125.2024.02.005. |
ZHAI W C, YAO L Z, YU H N, et al. Multimachine coordinated control for vertical matrix gravity energy storage system considering parallel power circulation minimization[J]. Journal of Global Energy Interconnection, 2024, 7(2): 155-165. DOI: 10.19705/j.cnki.issn2096-5125.2024.02.005. | |
31 | 戴理韬, 高剑, 黄守道, 等. 变速恒频水力发电技术及其发展[J]. 电力系统自动化, 2020, 44(24): 169-177. DOI: 10.7500/AEPS20191118001. |
DAI L T, GAO J, HUANG S D, et al. Variable-speed constant-frequency hydropower generation technology and its development[J]. Automation of Electric Power Systems, 2020, 44(24): 169-177. DOI: 10.7500/AEPS20191118001. | |
32 | 陈龙翔, 乐振春, 刘永奇. 大型交流励磁变速抽水蓄能机组技术特征与研制框架[J]. 电网技术, 2024, 48(6): 2366-2375. DOI: 10.13335/j.1000-3673.pst.2023.1434 |
CHEN L X, LE Z C, LIU Y Q. Technical characteristics and research framework of large AC excitation variable speed pumped storage units[J]. Power System Technology, 2024, 48(6): 2366-2375. DOI: 10.13335/j.1000-3673.pst.2023.1434 | |
33 | JOSEPH A, CHELLIAH T R. A review of power electronic converters for variable speed pumped storage plants: Configurations, operational challenges, and future Scopes[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2017, 6(1): 103-119. DOI:10.1109/JESTPE. 2017.2707397. |
34 | 王丹, 张甜甜, 吴嘉禾, 等. 大规模压缩空气储能系统发电方式与运行控制分析与构想[J]. 电力系统自动化, 2019, 43(24): 13-22. DOI: 10.7500/AEPS20181206004. |
WANG D, ZHANG T T, WU J H, et al. Analysis and conception of power generation mode and operation control of large-scale compressed air energy storage system[J]. Automation of Electric Power Systems, 2019, 43(24): 13-22. DOI: 10.7500/AEPS20181206004. | |
35 | HUANG J J, XU Y J, GUO H, et al. Dynamic performance and control scheme of variable-speed compressed air energy storage[J]. Applied Energy, 2022, 325: 119338. DOI:10.1016/j.apenergy. 2022.119338. |
36 | 徐帆, 戴兴建, 王又珑, 等. 飞轮储能用永磁电机研究进展[J]. 储能科学与技术, 2024, 13(10): 3423-3441. DOI: 10.19799/j.cnki.2095-4239.2024.0320. |
XU F, DAI X J, WANG Y L, et al. Research progress on permanent magnet machines for flywheel energy storage[J]. Energy Storage Science and Technology, 2024, 13(10): 3423-3441. https://doi.org/10.19799/j.cnki.2095-4239.2024.0320. | |
37 | 赵永明, 邱清泉, 聂子攀, 等. 重力/飞轮综合储能电机变流并网系统设计及运行特性[J]. 储能科学与技术, 2022, 11(12): 3895-3905. DOI: 10.19799/j.cnki.2095-4239.2022.0386. |
ZHAO Y M, QIU Q Q, NIE Z P, et al. Design and operating characteristics of a grid-connected motor-converting system for gravity/flywheel integrated energy storage[J]. Energy Storage Science and Technology, 2022, 11(12): 3895-3905. DOI: 10.19799/j.cnki.2095-4239.2022.0386. | |
38 | 喻恒凝, 姚良忠, 程帆, 等. 重力储能在新型电力系统中应用:前景及挑战[J/OL]. 中国电机工程学报, 1-16[2024-09-05]. https://doi.org/10.13334/j.0258-8013.pcsee.240834. |
YU H N, YAO L Z, CHENG F, et al. Prospects and challenges of gravity energy storage applications in new type power system[J/OL]. Proceedings of the CSEE, 1-16[2024-09-05]. https://doi.org/10.13334/j.0258-8013.pcsee.240834. | |
39 | 党杰, 石梦璇, 梁辰, 等. 基于储能控制的低频振荡抑制方法及作用机理[J]. 高电压技术, 2019, 45(12): 4029-4037. DOI: 10.13336/j.1003-6520.hve.20181218010. |
DANG J, SHI M X, LIANG C, et al. LFO damping method and mechanism analysis based on energy storage system[J]. High Voltage Engineering, 2019, 45(12): 4029-4037. DOI: 10.13336/j.1003-6520.hve.20181218010. | |
40 | 李相俊, 马会萌, 姜倩. 新能源侧储能配置技术研究综述[J]. 中国电力, 2022, 55(1): 13-25. DOI: 10.11930/j.issn.1004-9649.202109032. |
LI X J, MA H M, JIANG Q. Review of energy storage configuration technology on renewable energy side[J]. Electric Power, 2022, 55(1): 13-25. DOI: 10.11930/j.issn.1004-9649.202109032. | |
41 | 周皓, 李军徽, 葛长兴, 等. 改善风电并网电能质量的飞轮储能系统能量管理系统设计[J]. 太阳能学报, 2021, 42(3): 105-113. DOI: 10.19912/j.0254-0096.tynxb.2018-1163. |
ZHOU H, LI J H, GE C X, et al. Research on improving power quality of wind power system based on energy management system of flywheel energy storage system[J]. Acta Energiae Solaris Sinica, 2021, 42(3): 105-113. DOI: 10.19912/j.0254-0096.tynxb.2018-1163. | |
42 | ZHAO Y Q, ZHANG T T, SUN L, et al. Energy storage for black start services: A review[J]. International Journal of Minerals, Metallurgy and Materials, 2022, 29(4): 691-704. DOI:10.1007/s12613-022-2445-0. |
43 | 郭祚刚, 马溪原, 雷金勇, 等. 压缩空气储能示范进展及商业应用场景综述[J]. 南方能源建设, 2019, 6(3): 17-26. DOI: 10.16516/j.gedi.issn2095-8676.2019.03.003. |
GUO Z G, MA X Y, LEI J Y, et al. Review on demonstration progress and commercial application scenarios of compressed air energy storage system[J]. Southern Energy Construction, 2019, 6(3): 17-26. DOI: 10.16516/j.gedi.issn2095-8676. 2019.03.003. | |
44 | LI X J, PALAZZOLO A. A review of flywheel energy storage systems: State of the art and opportunities[J]. Journal of Energy Storage, 2022, 46: 103576. DOI:10.1016/j.est.2021.103576. |
45 | 罗胤, 常玉红, 赵颖, 等. 计及电网频率稳定的抽水蓄能电站控制策略研究[J]. 智慧电力, 2022, 50(11): 97-103, 118. DOI: 10.3969/j.issn.1673-7598.2022.11.016. |
LUO Y, CHANG Y H, ZHAO Y, et al. Control policy of pumped storage power station based on power grid frequency stability[J]. Smart Power, 2022, 50(11): 97-103, 118. DOI: 10.3969/j.issn.1673-7598.2022.11.016. | |
46 | 崔森, 陈来军, 陈思源, 等. 基于最优动态功率补偿的先进绝热压缩空气储能一次调频控制策略[J]. 高电压技术, 2024, 50(6): 2433-2441. DOI: 10.13336/j.1003-6520.hve.20231761 |
CUI S, CHEN L J, CHEN S Y, et al. Primary frequency modulation control of advanced adiabatic compressed air energy storage based on optimal dynamic power compensation[J]. High Voltage Engineering, 2024, 50(6): 2433-2441. DOI: 10.13336/j.1003-6520.hve.20231761 | |
47 | 陈彪, 王玮, 高嵩, 等. 基于模糊自适应指令分解的飞轮-火电一次调频控制策略[J]. 电力系统自动化, 2023, 47(19): 128-137. DOI: 10.7500/AEPS20221130007. |
CHEN B, WANG W, GAO S, et al. Primary frequency regulation control strategy for flywheel-thermal power joint system based on fuzzy adaptive command decomposition[J]. Automation of Electric Power Systems, 2023, 47(19): 128-137. DOI: 10.7500/AEPS20221130007. | |
48 | 汪康康, 孙昕炜, 周波, 等. 基于压缩空气储能附加阻尼控制的电力系统低频振荡抑制策略[J]. 中国电力, 2023, 56(10): 115-123. DOI: 10.11930/j.issn.1004-9649.202302081. |
WANG K K, SUN X W, ZHOU B, et al. Low-frequency oscillation suppression strategy for power system based on supplementary damping control of compressed air energy storage[J]. Electric Power, 2023, 56(10): 115-123. DOI: 10.11930/j.issn.1004-9649.202302081. | |
49 | 史林军, 陈中, 王海风, 等. 应用飞轮储能系统阻尼电力系统低频振荡[J]. 电力系统自动化, 2010, 34(8): 29-33. |
SHI L J, CHEN Z, WANG H F, et al. Damping of power system low-frequency oscillations with FESS[J]. Automation of Electric Power Systems, 2010, 34(8): 29-33. | |
50 | 陈玉龙, 武鑫, 滕伟, 等. 用于风电功率平抑的飞轮储能阵列功率协调控制策略[J]. 储能科学与技术, 2022, 11(2): 600-608. DOI: 10.19799/j.cnki.2095-4239.2021.0421. |
CHEN Y L, WU X, TENG W, et al. Power coordinated control strategy of flywheel energy storage array for wind power smoothing[J]. Energy Storage Science and Technology, 2022, 11(2): 600-608. DOI: 10.19799/j.cnki.2095-4239.2021.0421. | |
51 | 李保宏, 刘天琪, 许韦华, 等. 直流参与受端弱交流系统黑启动的技术条件[J]. 电力自动化设备, 2016, 36(5): 23-29. DOI: 10.16081/j.issn.1006-6047.2016.05.004. |
LI B H, LIU T Q, XU W H, et al. Technical conditions of HVDC for involving in black-start of weak receiving AC system[J]. Electric Power Automation Equipment, 2016, 36(5): 23-29. DOI: 10.16081/j.issn.1006-6047.2016.05.004. | |
52 | 刘连德, 何江, 周家旭, 等. 含高比例风光发电的电力系统中抽蓄电站的优化控制策略[J]. 储能科学与技术, 2022, 11(7): 2197-2205. DOI: 10.19799/j.cnki.2095-4239.2021.0696. |
LIU L D, HE J, ZHOU J X, et al. Optimization control strategy of pumped storage station in power system with high proportion wind/photovoltaic power[J]. Energy Storage Science and Technology, 2022, 11(7): 2197-2205. DOI: 10.19799/j.cnki.2095-4239.2021.0696. | |
53 | 李姚旺, 苗世洪, 尹斌鑫, 等. 含先进绝热压缩空气储能电站的电力系统实时调度模型[J]. 电工技术学报, 2019, 34(2): 387-397. DOI: 10.19595/j.cnki.1000-6753.tces.171720. |
LI Y W, MIAO S H, YIN B X, et al. Real-time dispatch model for power system with advanced adiabatic compressed air energy storage[J]. Transactions of China Electrotechnical Society, 2019, 34(2): 387-397. DOI: 10.19595/j.cnki.1000-6753.tces.171720. | |
54 | 崔文倩, 魏军强, 赵云灏, 等. 双碳目标下含重力储能的配电网多目标运行优化[J]. 电力建设, 2023, 44(4): 45-53. DOI: 10.12204/j.issn.1000-7229.2023.04.006. |
CUI W Q, WEI J Q, ZHAO Y H, et al. Multi-objective operation optimization of distribution network with gravity energy storage under double carbon target[J]. Electric Power Construction, 2023, 44(4): 45-53. DOI: 10.12204/j.issn.1000-7229.2023.04.006. | |
55 | 万正喜, 梅亚东, 陈福球, 等. 计及旋转备用要求的抽水蓄能电站日前调度研究[J]. 中国农村水利水电, 2024(10): 181-187. |
WAN Z X, MEI Y D, CHEN F Q, et al. Research on day ahead scheduling of pumped storage power station considering rotating reserve requirements[J]. China Rural Water and Hydropower, 2024(10): 181-187. | |
56 | 尹斌鑫, 苗世洪, 李姚旺, 等. 先进绝热压缩空气储能在综合能源系统中的经济性分析方法[J]. 电工技术学报, 2020, 35(19): 4062-4075. DOI: 10.19595/j.cnki.1000-6753.tces.191064. |
YIN B X, MIAO S H, LI Y W, et al. Study on the economic analysis method of advanced adiabatic compressed air energy storage in integrated energy system[J]. Transactions of China Electrotechnical Society, 2020, 35(19): 4062-4075. DOI: 10.19595/j.cnki.1000-6753.tces.191064. | |
57 | 吴盛军, 徐青山, 袁晓冬, 等. 规模化储能技术在电力系统中的需求与应用分析[J]. 电气工程学报, 2017, 12(8): 10-15. DOI: 10.11985/2017.08.002. |
WU S J, XU Q S, YUAN X D, et al. An analysis of requirements and applications of grid-scale energy storage technology in power system[J]. Journal of Electrical Engineering, 2017, 12(8): 10-15. DOI: 10.11985/2017.08.002. | |
58 | 张平, 康利斌, 王明菊, 等. 钠离子电池储能技术及经济性分析[J]. 储能科学与技术, 2022, 11(6): 1892-1901. DOI: 10.19799/j.cnki.2095-4239.2022.0066. |
ZHANG P, KANG L B, WANG M J, et al. Technology feasibility and economic analysis of Na-ion battery energy storage[J]. Energy Storage Science and Technology, 2022, 11(6): 1892-1901. DOI: 10.19799/j.cnki.2095-4239.2022.0066. | |
59 | 徐若晨, 张江涛, 刘明义, 等. 电化学储能及抽水蓄能全生命周期度电成本分析[J]. 电工电能新技术, 2021, 40(12): 10-18. DOI: 10.12067/ATEEE2105024. |
XU R C, ZHANG J T, LIU M Y, et al. Analysis of life cycle cost of electrochemical energy storage and pumped storage[J]. Advanced Technology of Electrical Engineering and Energy, 2021, 40(12): 10-18. DOI: 10.12067/ATEEE2105024. | |
60 | RAHMAN M M, GEMECHU E, ONI A O, et al. The development of a techno-economic model for the assessment of the cost of flywheel energy storage systems for utility-scale stationary applications[J]. Sustainable Energy Technologies and Assessments, 2021, 47: 101382. DOI:10.1016/j.seta.2021.101382. |
61 | 王粟, 肖立业, 唐文冰, 等. 新型重力储能研究综述[J]. 储能科学与技术, 2022, 11(5): 1575-1582. DOI: 10.19799/j.cnki.2095-4239.2021.0590. |
WANG S, XIAO L Y, TANG W B, et al. Review of new gravity energy storage[J]. Energy Storage Science and Technology, 2022, 11(5): 1575-1582. DOI: 10.19799/j.cnki.2095-4239. 2021.0590. | |
62 | 王欣竹, 韩民晓, TESHAGER Bitew Girmaw. 双馈式可变速抽水蓄能机组无功特性分析[J]. 电网技术, 2019, 43(8): 2918-2925. DOI: 10.13335/j.1000-3673.pst.2018.2190. |
WANG X Z, HAN M X, TESHAGER B. Reactive power characteristic analysis of doubly-fed adjustable-speed pumped storage unit[J]. Power System Technology, 2019, 43(8): 2918-2925. DOI: 10.13335/j.1000-3673.pst.2018.2190. | |
63 | 张文, 王龙轩, 丛晓明, 等. 新型压缩空气储能及其技术发展[J]. 科学技术与工程, 2023, 23(36): 15335-15347. DOI: 10.3969/j.issn.1671-1815.2023.36.002. |
ZHANG W, WANG L X, CONG X M, et al. New type of compressed air energy storage and its technological development[J]. Science Technology and Engineering, 2023, 23(36): 15335-15347. DOI: 10.3969/j.issn.1671-1815.2023.36.002. | |
64 | 李梦杰, 刘占斌, 何雅玲, 等. 考虑海上风能波动的水下压缩空气储能系统能量转化特性[J/OL]. 西安交通大学学报, 2024: 1-11. (2024-08-19). https://kns.cnki.net/kcms/detail/61.1069.T.20240819.1148.002.html. |
LI M J, LIU Z B, HE Y L, et al. Energy conversion characteristics of underwater compressed air energy storage system considering offshore wind energy fluctuation[J/OL]. Journal of Xi'an Jiaotong University, 2024: 1-11. (2024-08-19). https://kns.cnki.net/kcms/detail/61.1069.T.20240819.1148.002.html. | |
65 | 梁志宏, 刘吉臻, 洪烽, 等. 电力级大功率飞轮储能系统耦合火电机组调频技术研究及工程应用[J]. 中国电机工程学报, 2024, 44(21): 8518-8531. DOI: 10.13334/j.0258-8013.pcsee.231472. |
LIANG Z H, LIU J Z, HONG F, et al. Research and engineering application of frequency modulation technology of power-level high-power flywheel energy storage system coupled with thermal power unit[J]. Proceedings of the CSEE, 2024, 44(21): 8518-8531. DOI: 10.13334/j.0258-8013.pcsee.231472. | |
66 | 邱清泉, 罗晓悦, 林玉鑫, 等. 垂直式重力储能系统的研究进展和关键技术[J]. 储能科学与技术, 2024, 13(3): 934-945. DOI: 10.19799/j.cnki.2095-4239.2023.0789 |
QIU Q Q, LUO X Y, LIN Y X, et al. Research progress and key technologies in vertical gravity energy storage systems[J]. Energy Storage Science and Technology, 2024, 13(3): 934-945. DOI: 10.19799/j.cnki.2095-4239.2023.0789 |
[1] | Shuangming DUAN, Kuifeng XIA, Wei ZHU. Multi-stage optimization charging strategy for lithium-ion batteries considering diverse application scenarios [J]. Energy Storage Science and Technology, 2025, 14(2): 779-790. |
[2] | Lei WANG, Ruitao YAN, Fan ZHANG, Na YAN, Fen YUE, Xu FU, Mengchen LIU, Yunzhang YANG. Economic analysis of independent energy-storage project participation based on the optimization model of in-spot power market and primary frequency regulation markets [J]. Energy Storage Science and Technology, 2025, 14(2): 834-845. |
[3] | Chu ZHANG, Dongcai CHEN, Xiangping CHEN, Yongxiang CAI. Economic benefit analysis of optimal allocation of energy storage in multiple application scenarios [J]. Energy Storage Science and Technology, 2024, 13(6): 2078-2088. |
[4] | Qili LIN, Zhen CHEN, Xiaohu WANG, Hongxun QI, Wei WANG. Economic analysis of large-scale hydrogen energy storage based on the “electric-hydrogen-electric” process [J]. Energy Storage Science and Technology, 2024, 13(6): 2068-2077. |
[5] | Chengzhi XING, Ming ZHAO, Chao SHANG, Sijing ZHANG, Zili ZHANG, Yang LIU. Research progress and application scenarios of storage and transportation technology with liquid organic hydrogen carrier [J]. Energy Storage Science and Technology, 2024, 13(2): 643-651. |
[6] | Liugan ZHANG, Yingchi ZHOU, Wenbing SUN, Kai YE, Longxiang CHEN. Performance of precooled CAES system using ORC-VCR to recover compression heat [J]. Energy Storage Science and Technology, 2024, 13(2): 611-622. |
[7] | Wen DU, Junlei WANG, Yunfei XU, Shilong LI, Kun WANG. Techno-economic analysis for the preparation of Li-ion battery's ternary cathode material using flame spray pyrolysis [J]. Energy Storage Science and Technology, 2024, 13(1): 345-357. |
[8] | Weiling ZHANG, Han GU, Chao ZHANG, Ang GE, Yuanxu YING. Technical economic characteristics and development trends of compressed air energy storage [J]. Energy Storage Science and Technology, 2023, 12(4): 1295-1301. |
[9] | Fuchao LI, Mingbiao CHEN, Qun DU, Yongzhen CHEN, Wenji SONG, Wenye LIN, Ziping FENG. Research on in-situ remote offshore wind-power consumption based on ice-slurry cold storage [J]. Energy Storage Science and Technology, 2023, 12(12): 3730-3739. |
[10] | ZHANG Ping, KANG Libin, WANG Mingju, ZHAO Guang, LUO Zhenhua, TANG Kun, LU Yaxiang, HU Yongsheng. Technology feasibility and economic analysis of Na-ion battery energy storage [J]. Energy Storage Science and Technology, 2022, 11(6): 1892-1901. |
[11] | Kai DING, Jian ZHENG, Wei LI, Zengrui HUANG, Yi WANG, Yimin QIAN, Zixuan ZHENG, Qi XIE. Hierarchical voltage sag mitigation scheme based on user-side energy storage systems and its economic analysis [J]. Energy Storage Science and Technology, 2022, 11(10): 3381-3390. |
[12] | Huihui YANG, Li ZENG, Bo TANG, Xiaoqing WANG, Yong LU. Experimental study on an EG/paraffin composite thermal storage material and its feasibility for off-peak power heating utilization [J]. Energy Storage Science and Technology, 2022, 11(1): 19-29. |
[13] | Dekun FU, Wenji SONG, Mingbiao CHEN, Ziping FENG. Techno-economic analysis of seasonal cold storage technology and its application in protected agriculture [J]. Energy Storage Science and Technology, 2021, 10(6): 2385-2391. |
[14] | Qihui YU, Li TIAN, Xiaofei LI, Xiaodong LI, Xin TAN, Yeming ZHANG. Compressed air energy storage capacity configuration and economic evaluation considering the uncertainty of wind energy [J]. Energy Storage Science and Technology, 2021, 10(5): 1614-1623. |
[15] | Lei HOU, Zichi WANG, Yingchao LI, Saihao WANG, Yajie ZHANG, Yusen ZHANG. Analysis and multi-objective optimization of CAES system [J]. Energy Storage Science and Technology, 2021, 10(1): 379-384. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||