[1] ZHANG T,IMANISHI N,et al. A novel high energy density rechargeable lithium/air battery[J]. Chem. Commun.,2010,46:1661-1663.
[2] PENG Z Q,FREUNBERGER S A,CHEN Y H,et al. A reversible and higher-rate Li-O2 battery[J]. Science,2012,337:563-566.
[3] MCCLOSKET B D,SPEDEL A,SCHEFFLER R,et al. Twin problems of interfacial carbonate formation in nonaqueous Li-O2 batteries[J]. J. Phys. Chem. Lett.,2012,3:997-1001.
[4] FREUNBERGER S A,BRUCE P G,et al. Reactions in the rechargeable lithium-O2 battery with alkyl carbonate electrolytes[J]. J. Am. Chem. Soc.,2011,133:8040-8047.
[5] CHEN Y H,FREUNBERGER S A,PENG Z Q,et al. Charging a Li-O2 battery using a redox mediator[J]. Nat. Chem.,2013,5:489-494.
[6] MA Z,YUAN X X,LI L,et al. A review of cathode materials and structures for rechargeable lithium-air batteries[J]. Energy Environ. Sci.,2015,8:2144-2198.
[7] ZHANG T,ZHOU H. A reversible long-life lithium-air battery in ambient air[J]. Nat. Commun.,2013,4:1-7.
[8] ZHU X B,ZHAO T S,WEI Z H,et al. A high-rate and long cycle life solid-state lithium-air battery[J]. Energy Environ. Sci.,2015,8:3745-3754.
[9] SHUI J L,LIU D J,et al. Reversibility of anodic lithium in rechargeable lithium-oxygen batteries[J]. Nat. Commun.,2013,4:1-7.
[10] LEE K,PARK Y J. CsI as multifunctional redox mediator for enhanced Li-air batteries[J]. ACS Appl. Mater. Interfaces,2016,8:11893-11897.
[11] SEMKOW K W,SAMMELLS A F,et al. A lithium oxygen secondary battery[J]. J. Electrochem. Soc.,1987,134:2084-2085.
[12] KUMAR B,KUMAR J,LEESE R,et al. A solid-state, rechargeable, long cycle life lithium-air battery[J]. J. Electrochem. Soc.,2010,157:A50-A54.
[13] KITAURA H,ZHOU H. Electrochemical performance and reaction mechanism of all-solid-state lithium-air batteries composed of lithium, Li1+xAlyGe2-y(PO4)3 solid electrolyte and carbon nanotube air electrode[J]. Energy Environ. Sci.,2012,5:9077-9084.
[14] 谭国强. 新型固态化锂二次电池及相关材料的制备与性能研究[D]. 北京理工大学,2014.
TAN G Q. Preparation and performance of the novel solid-state rechargeable lithium batteries and relative materials[D]. Beijing:Beijing Institute of Technology,2014.
[15] 刘清朝. 锂空气电池电极材料的制备和电化学性能研究[D]. 吉林大学,2015.
LIU Q Z. The preparation and electrochemical performance of electrode for lithium-air batteries [D]. Jilin:Jilin University,2015.
[16] ZHU X B,ZHAO T S,WEI Z H,et al. A novel solid-state Li-O2 battery with an integrated electrolyte and cathode structure[J]. Energy Environ. Sci.,2015,8:2782-2790.
[17] SUZUKII Y,KAMI K,WATANABE K,et al. Characteristics of discharge products in all-solid-state Li-air batteries[J]. Solid State Ionics.,2015,278:222-227.
[18] KITAURA H,ZHOU H. All-solid-state lithium-oxygen battery with high safety in wide ambient temperature range[J]. Sci. Rep.,2015,5:doi:10.1038/srep13271.
[19] KUMAR B,KUMAR J. Cathodes for solid-state lithium-oxygen cells:Roles of nasicon glass-ceramics[J]. J. Electrochem. Soc.,2010,157:A611-A616.
[20] LIU Y,LI B,KITAURA H,et al. Fabrication and performance of all-solid-state Li-air battery with SWCNTs/LAGP cathode[J]. ACS Appl. Mater. Interfaces,2015,7:17307-17310.
[21] KICHAMBARE P,RODRIGUES S,KUMAR J. Mesoporous nitrogen-doped carbon-glass ceramic cathodes for solid-state lithium-oxygen batteries[J]. ACS Appl. Mater. Interfaces,2012,4:49-52.
[22] KITAURA H,ZHOU H,et al. Electrochemical performance of solid-state lithium-air batteries using carbon nanotube catalyst in the air electrode[J]. Adv. Energy Mater.,2012,2:889-894.
[23] HASSOUN J,CROCE F,ARMAND M,et al. Investigation of the O2 electrochemistry in a polymer electrolyte solid-state cell[J]. Angew. Chem. Int. Ed.,2011,50:2999-3002.
[24] BALAISH M,PELED E,GOLODNITSKY D,et al. Liquid-free lithium-oxygen batteries[J]. Angew. Chem. Int. Ed.,2015,54:446-450.
[25] JUNG K N,LEE J I,JUNG J H,et al. A quasi-solid-state rechargeable lithium-oxygen battery based on a gel polymer electrolyte with an ionic liquid[J]. Chem. Commun.,2014,50:5458-5461.
[26] KIM H,KIM T Y,ROE V V,et al. Enhanced electrochemical stability of quasi-solid-state electrolyte containing SiO2 nanoparticles for Li-O2 battery applications[J]. ACS Appl. Mater. Interfaces,2016,8:1344-1350.
[27] YI J,LIU X,GUO S,et al. Novel stable gel polymer electrolyte:Toward a high safety and long life Li-air battery[J]. ACS Appl. Mater. Interfaces,2015,7:23798-23804.
[28] ZHANG T,IMANISHI N,HASEGAWA S,et al. Li/polymer electrolyte/water stable lithium-conducting glass ceramics composite for lithium-air secondary batteries with an aqueous electrolyte[J]. J. Electrochem. Soc.,2008,155:A965-A969.
[29] SUN Y. Lithium ion conducting membranes for lithium-air batteries[J]. Nano Energy,2013,2:801-816.
[30] HARDING J R,AMANCHUMWU C V,HAMMOND P T,et al. Instability of poly(ethylene oxide) upon oxidation in lithium-air batteries[J]. J. Phys. Chem. C,2015,119:6947-6955.
[31] KUMAR J,KICHAMBARE P,RAI A K,et al. A high performance ceramic-polymer separator for lithium batteries[J]. J. Power Sources,2016,301:194-198.
[32] LU J,PARK J B,SUN Y K,et al. Aprotic and aqueous Li-O2 batteries[J]. Chem. Rev.,2014,114:5611-5640.
[33] KICHAMBARE P,KUMAR J,RODRIGUES S,et al. Electro- chemical performance of highly mesoporous nitrogen doped carbon cathode in lithium-oxygen batteries[J]. Journal of Power Sources,2011,196(6):3310-3316.
[34] NAKNANISHI S,MIZUNO F,NOBUHARA K,et al. Influence of the carbon surface on cathode deposits in non-aqueous Li-O2 batteries[J]. Carbon,2012,50(13):4794-4803.
[35] LI F,YAMADA A,ZHOU H,et al. Ru/ITO:A carbon-free cathode for nonaqueous Li-O2 battery[J]. Nano Lett.,2013,13:4702-4707.
[36] LIAO K,ZHANG T,ZHOU H,et al. Nano-porous Ru as a carbon- and binder-free cathode for Li-O2 batteries[J]. ChemSusChem.,2015,8:1429-1434.
[37] THOTIYL M M O,FREUNBERGER S A,BRUCE P G,et al. A stable cathode for the aprotic Li-O2 battery[J]. Nat. Mater.,2013,12:1050-1056.
[38] XIE J,YAO X H,WANG D,et al. Selective deposition of Ru nanoparticles on TiSi2 nanonet and its utilization for Li2O2 formation and decomposition[J]. J. Am. Chem. Soc.,2014,136:8903-8906.
[39] CAO J,XIE J,ZHAO X,et al. Tips-bundled Pt/Co3O4 nanowires with directed peripheral growth of Li2O2 as efficient binder/ carbon-free catalytic cathode for lithium-oxygen battery[J]. ACS Catal.,2015,5:241-245.
[40] LIAO K,ZHANG T,ZHOU H,et al. An oxygen cathode with stable full discharge-charge capability based on 2D conducting oxide[J]. Energy Environ. Sci.,2015,8:1992-1997.
[41] LI F,TANG D M,ZHANG T,et al. Superior performance of a Li-O2 battery with metallic RuO2 hollow spheres as the carbon-free cathode[J]. Adv. Energy Mater.,2015,doi:10.1002/aenm.201500294.
[42] HASSOUN J,JUNG H G,LEE D J,et al. A metal-free, lithium-ion oxygen battery:A step forward to safety in lithium-air batteries[J]. Nano Lett.,2012,12:5775-5779.
[43] HE P,ZHANG T,JIANG J,et al. Lithium-air batteries with hybrid electrolytes[J]. J. Phys. Chem. Lett.,2016,7:1267-1280.
[44] LIANG Z,LIN D,ZHAO J,et al. Composite lithium metal anode by melt infusion of lithium into a 3D conducting scaffold with lithiophilic coating[J]. Proc. Natl. Acad. Sci.,2016,113:2862-2867.
[45] YAN K,LU Z,LEE H W,et al. Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth[J]. Nat. Energy,2016,1:doi: 10.1038/nenergy.2016.10.
[46] LIN D,LIU Y,LIANG Z,et al. Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes[J]. Nat. Nanotechnol.,2016,11:626-632.
[47] AONO H,SUGIMOTO E,SADAOKA Y,et al. Ionic-conductivity of the lithium titanium phosphate [Li1+xAlxTi2-x(PO4)3], [Li1+xScxTi2-x (PO4)3], [Li1+xYxTi2-x(PO4)3], [Li1+xLaxTi2-x(PO4)3] systems[J]. Electrochem. Soc.,1989,136:590-591.
[48] LI Y Q,CAO Y,GUO X X. Densification and lithium ion conductivity of garnet-type Li7-xLa3Zr2-xTaxO12(x=0.25) solid electrolytes[J]. Chin. Phys. B,2013,22(7):1-5.
[49] ZHANG T,ZHOU H S. From Li-O2 to Li-air batteries:Carbon nanotubes/ionic liquid gels with a tricontinuous passage of electrons, ions, and oxygen[J]. Angew. Chem. Int. Ed.,2012,51:11062-11067.
[50] ZHANG T,MATSUDA H,ZHOU H S. Gel-derived cation-π stacking films of carbon nanotube-graphene complexes as oxygen cathodes[J]. ChemSusChem,2014,7:2845-2852.
[51] OSAKA T,MOMMA T,TAJIMA T,et al. Enhancement of lithium anode cyclability in propylene carbonate electrolyte by CO2 addition and its protective effect against H2O impurity[J]. Journal of the Electrochemical Society.,1995,142(4):1057-1060.
[52] SHIRAISHI S,KANAMURA K,TAKEHARA Z I. Influence of initial surface condition of lithium metal anodes on surface modification with Hf[J]. Journal of Applied Electrochemistry,1999,29(7):869-881.
[53] WALKER W,GIORDANI V,UDDIN J,et al. A rechargeable Li-O2 battery using a lithium nitrate/N, N-dimethylacetamide electrolyte[J]. J. Am. Chem. Soc.,2013,135:2076-2079.
[54] GRANVALET-MANCINI M,HONEYCYTT L,TEETERS D. Characterization of self-assembled molecular layers at the polymer electrolyte/lithium electrode interface[J]. Electrochimica Acta.,2000,45(8/9):1491-1500.
[55] GRANVALET-MANCINI M,TEERTERS D. The effects of chemical composition of adsorbed molecular layers on lithium electrode/ polymer electrolyte interface stabilization[J]. Journal of Power Sources,2001,97-98:624-627.
[56] ZHANG T,IMANISHI N,HASEGAWA S,et al. Water-stable lithium anode with the three-layer construction for aqueous lithium-air secondary batteries[J]. Electrochem. Solid-State Lett.,2009,12:A132-A135.
[57] LIU S,WANG H,IMANISHI N,et al. Eeffect of co-doping nano-silica filler and N-methyl-N-propylpiperidinium bis(trifluoromethanesulfonyl) imide into polymer electrolyte on Li dendrite formation in Li/poly (ethylene oxide)-Li(CF3SO2)2N/Li[J]. J. Power Sources,2011,196:7681-7686.
[58] LIU S,IMANISHI N,ZHANG T,et al. Lithium dendrite formation in Li/PEO-lithium bis(trifluoromethanesulfonyl)imide and N-methyl- N-propylpiperidinium bis(trifluoromethanesulfonyl)imide/Li cells[J]. J. Electrochem. Soc.,2010,157:A1092-A1098.
[59] LI F,WU S,LI D,et al. The water catalysis at oxygen cathodes of Li-O2 cells[J]. Nat. Commun.,2015,6:doi: 10.1038/ncomms8843.
[60] LIU T,LESKES M,YU W,et al. Cycling Li-O2 batteries via LiOH formation and decomposition[J]. Science,2015,350:530-533.
[61] HONG M,CHOI H C,BYON R.Nanoporous NiO plates with a unique role for promoted oxidation of carbonate and carboxylate species in the Li-O2 battery[J]. Chem. Mater.,2015,27:2234-2241.
[62] ZHENG H,XIAO D,LI X. New insight in understanding oxygen reduction and evolution in solid-state lithium-oxygen batteries using an in situ environmental scanning electron microscope[J]. Nano Lett.,2014,14:4245-4249.