Energy Storage Science and Technology ›› 2016, Vol. 5 ›› Issue (6): 781-787.doi: 10.12028/j.issn.2095-4239.2016.0042
Previous Articles Next Articles
TAO Ying1, LI Huan1, YANG Quanhong1,2
Received:
2016-07-06
Revised:
2016-08-08
Online:
2016-11-01
Published:
2016-11-01
TAO Ying1, LI Huan1, YANG Quanhong1,2. Compact energy storage: Opportunities and challenges of graphene for supercapacitors[J]. Energy Storage Science and Technology, 2016, 5(6): 781-787.
[1] DUNN Bruce,KAMATH Haresh,TARASCON Jean-Marie. Electrical energy storage for the grid:A battery of choices[J]. Science,2011,334(6058):928-935. [2] LIU J,ZHANG J G,YANG Z G,et al. Materials science and materials chemistry for large scale electrochemical. energy storage:From transportation to electrical grid[J]. Advanced Functional Materials,2013,23(8):929-946. [3] BONACCORSO F,COLOMBO L,YU G H,et al. Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage[J]. Science,2015,347(6217):doi: 10.1126/ science. 1246501. [4] DAI Liming. Functionalization of graphene for efficient energy conversion and storage[J]. Accounts of Chemical Research,2012,46(1):31-42. [5] ZHU Yanwu,MURALI Shanthi,STOLLER Meryl D,et al. Carbon-based supercapacitors produced by activation of graphene[J]. Science,2011,332(6037):1537-1541. [6] CHEN K F,SONG S Y,LIU F,et al. Structural. design of graphene for use in electrochemical energy storage devices[J]. Chemical Society Reviews,2015,44(17):6230-6257. [7] EL-KADY M F,STRONG V,DUBIN S,et al. Laser scribing of high-performance and flexible graphene-based electrochemical capacitors[J]. Science,2012,335(6074):1326-1330. [8] WINTER M,BRODD R J. What are batteries, fuel cells, and supercapacitors?[J]. Chemical Reviews,2004,104(10):4245-4269. [9] ZHANG L L,ZHAO X S. Carbon-based materials as supercapacitor electrodes[J]. Chemical Society Reviews,2009,38(9):2520-2531. [10] ZHAI Yunpu,DOU Yuqian,ZHAO Dongyuan,et al. Carbon materials for chemical capacitive energy storage[J]. Advanced Materials,2011,23(42):4828-4850. [11] XIA Jilin,CHEN Fang,LI Jinghong,et al. Measurement of the quantum capacitance of graphene[J]. Nature Nanotechnology,2009,4(8):505-509. [12] LI Z,LIU Z,SUN H Y,et al. Superstructured assembly of nanocarbons:Fullerenes, nanotubes, and graphene[J]. Chemical Reviews,2015,115(15):7046-7117. [13] YIN Shengyan,NIU Zhiqiang,CHEN Xiaodong. Assembly of graphene sheets into 3D macroscopic structures[J]. Small,2012,8(16):2458-2463. [14] LIU Chenguang,YU Zhenning,NEFF David,et al. Graphene-based supercapacitor with an ultrahigh energy density[J]. Nano Letters,2010,10(12):4863-4868. [15] GOGOTSI Y,SIMON P. True performance metrics in electrochemical energy storage[J]. Science,2011,334(6058):917-918. [16] SIMON P,GOGOTSI Y. Capacitive energy storage in nanostructured carbon-electrolyte systems[J]. Accounts of Chemical Research,2013,46(5):1094-1103. [17] GHIDIU M,LUKATSKAYA M R,ZHAO M Q,et al. Conductive two-dimensional. titanium carbide 'clay' with high volumetric capacitance[J]. Nature,2014,516(7529):78-81. [18] WANG Q,YAN J,FAN Z J. Carbon materials for high volumetric performance supercapacitors:Design, progress, challenges and opportunities[J]. Energy & Environmental Science,2016,9(3):729-762. [19] ACERCE M,VOIRY D,CHHOWALLA M. Metallic 1T phase MoS2 nanosheets as supercapacitor electrode materials[J]. Nature Nanotechnology,2015,10(4):313-318. [20] TAO Y,XIE X,LV W,et al. Towards ultrahigh volumetric capacitance:Graphene derived highly dense but porous carbons for supercapacitors[J]. Scientific Reports,2013,3:2975. [21] ZHANG C,LIU D H,LV W,et al. A high-density graphene-sulfur assembly:A promising cathode for compact Li-S batteries[J]. Nanoscale,2015,7(13):5592-5597. [22] XU Yue,TAO Ying,ZHENG Xiaoyu,et al. A metal-free supercapacitor electrode material. with a record high volumetric capacitance over [23] LI Huan,TAO Ying,ZHENG Xiaoyu,et al. Ultra-thick graphene bulk supercapacitor electrodes for compact energy storage[J]. Energy & Environmental Science,2016,doi:10.1039/C6EE [24] ZHANG Jun,LV Wei,TAO Ying,et al. Ultrafast high-volumetric sodium storage of folded-graphene electrodes through surface-induced redox reactions[J]. Energy Storage Materials,2015,1:112-118. [25] YANG X,CHENG C,WANG Y,et al. Liquid-mediated dense integration of graphene materials for compact capacitive energy storage[J]. Science,2013,341(6145):534-537. [26] WANG D W,LI F,LIU M,et al. 3D Aperiodic hierarchical. porous graphitic carbon material for high-rate electrochemical. capacitive energy storage[J]. Angewandte Chemie-International. Edition,2008,47(9):373-376. [27] ZHANG K,ZHANG L L,ZHAO X S,et al. Graphene/polyaniline nanoriber composites as supercapacitor electrodes[J]. Chemistry of Materials,2010,22(4):1392-1401. [28] JEONG H M,LEE J W,SHIN W H,et al. Nitrogen-doped graphene for high-performance ultracapacitors and the importance of nitrogen-doped sites at basal planes[J]. Nano Letters,2011,11(6):2472-2477. [29] FANG Yan,LUO Bin,JIA Yuying,et al. Renewing functionalized graphene as electrodes for high-performance supercapacitors[J]. Advanced Materials,2012,24(47):6348-6355. [30] WANG Yufei,YANG Xiaowei,QIU Ling,et al. Revisiting the capacitance of polyaniline by using graphene hydrogel films as a substrate:The importance of nano-architecturing[J]. Energy & Environmental Science,2013,6(2):477-481. [31] LU Q,CHEN J G,XIAO J Q. Nanostructured electrodes for high-performance pseudocapacitors[J]. Angewandte Chemie- International Edition,2013,52(7):1882-1889. [32] LIN T,CHEN I W,LIU F,et al. Nitrogen-doped mesoporous carbon of extraordinary capacitance for electrochemical energy storage[J]. Science,2015,350(6267):1508-1513. [33] XU Fei,TANG Zhiwei,HUANG Siqi,et al. Facile synthesis of ultrahigh-surface-area hollow carbon nanospheres for enhanced adsorption and energy storage[J]. Nature Communications,2015,6:7221. [34] MURALI Shanthi,QUARLES Neil,ZHANG Li Li,et al. Volumetric capacitance of compressed activated microwave-expanded graphite oxide (a-MEGO) electrodes[J]. Nano Energy,2013,2(5):764-768. [35] MOUSSA M,ZHAO Z H,EL-KADY M F,et al. Free-standing composite hydrogel films for superior volumetric capacitance[J]. Journal of Materials Chemistry A,2015,3(30):15668-15674. [36] LI H,TAO Y,ZHENG X Y,et al. Compressed porous graphene particles for use as supercapacitor electrodes with excellent volumetric performance[J]. Nanoscale,2015,7(44):18459-18463. [37] HONG J Y,BAK B M,WIE J J,et al. Reversibly compressible, highly elastic, and durable graphene aerogels for energy storage devices under limiting conditions[J]. Advanced Functional Materials,2015,25(7):1053-1062. [38] XU Y X,LIN Z Y,ZHONG X,et al. Holey graphene frameworks for highly efficient capacitive energy storage[J]. Nature Communications,2014,5:4554. [39] WU Z S,PARVEZ K,FENG X,et al. Graphene-based in-plane micro-supercapacitors with high power and energy densities[J]. Nature Communications,2013,4:2487. [40] CHMIOLA John,LARGEOT Celine,TABERNA Pierre-Louis,et al. Monolithic carbide-derived carbon films for micro-supercapacitors[J]. Science,2010,328(5977):480-483. [41] HUANG P,LETHIEN C,PINAUD S,et al. On-chip and freestanding elastic carbon films for micro-supercapacitors[J]. Science,2016,351(6274):691-695. [42] WU Zhongshuai,PARVEZ Khaled,WINTER Andreas,et al. Layer-by-layer assembled heteroatom-doped graphene films with ultrahigh volumetric capacitance and rate capability for micro-supercapacitors[J]. Advanced Materials,2014,26(26):4552-4558. [43] ZHANG C,LV W,TAO Y,et al. Towards superior volumetric performance:Design and preparation of novel carbon materials for energy storage[J]. Energy & Environmental Science,2015,8(5):1390-1403. [44] YOON Yeoheung,LEE Keunsik,KWON Soongeun,et al. Vertical alignments of graphene sheets spatially and densely piled for fast ion diffusion in compact supercapacitors [J]. ACS Nano,2014,8(5):4580-4590. [45] YAN Jun,WANG Qian,WEI Tong,et al. Template-assisted low temperature synthesis of functionalized graphene for ultrahigh volumetric performance supercapacitors[J]. ACS Nano,2014,8(5):4720-4729. [46] LIU D Q,JIA Z,WANG D L. A novel route to fabricate high-density graphene assemblies for high-volumetric-performance supercapa citors:Effect of cation pre-intercalation[J]. RSC Advances,2016,6(43):36971-36977. [47] LIU D Q,JIA Z,ZHU J X,et al. A regular, compact but microporous packing structure:High-density graphene assemblies for high-volumetric- performance supercapacitors[J]. Journal of Materials Chemistry A,2015,3(24):12653-12662. [48] JIANG Lili,SHENG Lizhi,LONG Conglai,et al. Densely packed graphene nanomesh-carbon nanotube hybrid film for ultra-high volumetric performance supercapacitors[J]. Nano Energy,2015,11:471-480. [49] JIANG L L,SHENG L Z,LONG C L,et al. Functional pillared graphene frameworks for ultrahigh volumetric performance supercapacitors[J]. Advanced Energy Materials,2015,5(15):doi: 10.1002/aenm.201500771. [50] WANG Q,YAN J,FAN Z J. Nitrogen-doped sandwich-like porous carbon nanosheets for high volumetric performance supercapacitors[J]. Electrochimica Acta,2014,146:548-555. [51] WANG J,DING B,XU Y L,et al. Crumpled nitrogen-doped graphene for supercapacitors with high gravimetric and volumetric performances[J]. ACS Applied Materials & Interfaces,2015,7(40):22284-22291. |
[1] | Yuzuo WANG, Yinli LU, Miao DENG, Bin YANG, Xuewen YU, Ge JIN, Dianbo RUAN. Research progress of self-discharge in supercapacitors [J]. Energy Storage Science and Technology, 2022, 11(7): 2114-2125. |
[2] | HAN Junwei, XIAO Jing, TAO Ying, KONG Debin, LV Wei, YANG Quanhong. Compact energy storage: Methodology with graphenes and the applications [J]. Energy Storage Science and Technology, 2022, 11(6): 1865-1873. |
[3] | Liangtao XIONG, Jifen WANG, Huaqing XIE, Xuelai ZHANG. Effect of vacancy defects on thermal conductivity of single-layer graphene by molecular dynamics [J]. Energy Storage Science and Technology, 2022, 11(5): 1322-1330. |
[4] | Tiezhu GUO, Di ZHOU, Chuanfang ZHANG. Strategies for improving MXene colloidal stability and impact on their supercapacitor performance [J]. Energy Storage Science and Technology, 2022, 11(4): 1165-1174. |
[5] | Nan LIN, Ulrike KREWER, Jochen ZAUSCH, Konrad STEINER, Haibo LIN, Shouhua FENG. Development and application of multiphysics models for electrochemical energy storage and conversion systems [J]. Energy Storage Science and Technology, 2022, 11(4): 1149-1164. |
[6] | Bowen YUE, Jiahuan TONG, Yuwen LIU, Feng HUO. Simulation calculation method and application of ionic liquid electrolyte [J]. Energy Storage Science and Technology, 2022, 11(3): 897-911. |
[7] | Yongli TONG, Xiang WU. Electrochemical performance of Co3O4 electrode materials derived from Co metal-organic framework [J]. Energy Storage Science and Technology, 2022, 11(3): 1035-1043. |
[8] | Xue HAN, Wei DENG, Xufeng ZHOU, Zhaopin LIU. Patenting activity of graphene for energy storage [J]. Energy Storage Science and Technology, 2022, 11(1): 335-349. |
[9] | Liangbo QIAO, Xiaohu ZHANG, Xianzhong SUN, Xiong ZHANG, Yanwei MA. Advances in battery-supercapacitor hybrid energy storage system [J]. Energy Storage Science and Technology, 2022, 11(1): 98-106. |
[10] | Kai WANG, Zhaoxia HOU, Siyao LI, Chenying QU, Yue WANG, Youjian KONG. Research progress of stretchable all-solid supercapacitors [J]. Energy Storage Science and Technology, 2021, 10(3): 887-895. |
[11] | Shuai CHEN, Ling CHEN, Hao JIANG. Nitrogen-doped amorphous vanadium oxide nanosheet arrays for rapid-charging quasi-solid asymmetric supercapacitors [J]. Energy Storage Science and Technology, 2021, 10(3): 945-951. |
[12] | Zhijie BI, Ning ZHAO, Xiangxin GUO. Electrochromic-supercapacitors based on tungsten oxide and prussian blue [J]. Energy Storage Science and Technology, 2021, 10(3): 952-957. |
[13] | Xiliang WANG, Wenfeng CUI, Kefeng TONG, Xuelong CHEN, Zhijun QIAO, Dianbo RUAN. Design and simulation of an integrated three-port converter for supercapacitor energy storage [J]. Energy Storage Science and Technology, 2021, 10(3): 1095-1102. |
[14] | Xiangdong LI, Rui LIAN, Jiamei WU, Lianghui TANG, Zhijun QIAO, Dianbo RUAN. Thermal simulation analysis of a supercapacitor module charge-discharge cycle based on the Fluent software [J]. Energy Storage Science and Technology, 2021, 10(2): 732-737. |
[15] | Rui FENG, Hai LU, Xinyi LIU, Hao LI, Xiangyuan LI. Study on effect of an asymmetric design of the mass on the cathode and anode on supercapacitor performance [J]. Energy Storage Science and Technology, 2021, 10(2): 491-496. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||