Energy Storage Science and Technology ›› 2017, Vol. 6 ›› Issue (5): 1026-1040.doi: 10.12028/j.issn.2095-4239.2017.0106
Previous Articles Next Articles
GU Sui, JIN Jun, LU Yang, QIAN Rong, WEN Zhaoyin
Received:
2017-06-16
Revised:
2017-07-24
Online:
2017-09-01
Published:
2017-09-01
GU Sui, JIN Jun, LU Yang, QIAN Rong, WEN Zhaoyin. Recent progress in research on the shuttle effect and its suppression for lithium sulfur batteries[J]. Energy Storage Science and Technology, 2017, 6(5): 1026-1040.
[1] SEH Z W, SUN Y, ZHANG Q, et al. Designing high-energy lithium-sulfur batteries[J]. Chem. Soc. Rev., 2016, 45(20): 5605-5634. [2] GAO X P, YANG H X. Multi-electron reaction materials for high energy density batteries[J]. Energy Environ. Sci., 2010, 3(2): 174-189. [3] JI X L, NAZAR L F. Advances in Li-S batteries[J]. J. Mater. Chem., 2010, 20(44): 9821-9826. [4] WHITTINGHAM M S. Lithium batteries and cathode materials[J]. Chem. Rev., 2004, 104(10): 4271-4301. [5] CHEN R J, ZHAO T, WU F. From a historic review to horizons beyond: Lithium-sulphur batteries run on the wheels[J]. Chem. Commun., 2015, 51(1): 18-33. [6] ZHANG S S. Liquid electrolyte lithium/sulfur battery: Fundamental chemistry, problems, and solutions[J]. J. Power Sources, 2013, 231: 153-162. [7] RAUH R D, ABRAHAM K M, PEARSON G F, et al. A lithium/dissolved sulfur battery with an organic electrolyte[J]. J. Electrochem. Soc., 1979, 126(4): 523-527. [8] WANG Q, ZHENG J, WALTER E, et al. Direct observation of sulfur radicals as reaction media in lithium sulfur batteries[J]. J. Electrochem. Soc., 2015, 162(3): A474-A478. [9] ZHANG S, UENO K, DOKKO K, et al. Recent advances in electrolytes for lithium-sulfur batteries[J]. Adv. Energy Mater., 2015, 5(16): 1500117. [10] MIKHAYLIK Y V, AKRIDGE J R. Polysulfide shuttle study in the Li/S battery system[J]. J. Electrochem. Soc., 2004, 151(11): A1969-A1976. [11] JI X L, LEE K T, NAZAR L F. A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries[J]. Nat. Mater., 2009, 8(6): 500-506. [12] WANG L, LIU J, YUAN S, et al. To mitigate self-discharge of lithium-sulfur batteries by optimizing ionic liquid electrolytes[J]. Energy Environ. Sci., 2016, 9(1): 224-231. [13] BARCHASZ C, LEPRETRE J C, PATOUX S, et al. Revisiting TEGDME/DIOX binary electrolytes for lithium/sulfur batteries: importance of solvation ability and additives[J]. J. Electrochem. Soc., 2013, 160(3): A430-A436. [14] SUO L, HU Y S, LI H, et al. A new class of solvent-in-salt electrolyte for high-energy rechargeable metallic lithium batteries[J]. Nat. Commun., 2013, 4: 1481-1489. [15] TACHIKAWA N, YAMAUCHI K, TAKASHIMA E, et al. Reversibility of electrochemical reactions of sulfur supported on inverse opal carbon in glyme-Li salt molten complex electrolytes[J]. Chem. Commun., 2011, 47(28): 8157-8159. [16] DOKKO K, TACHIKAWA N, YAMAUCHI K, et al. Solvate ionic liquid electrolyte for Li-S batteries[J]. J. Electrochem. Soc., 2013, 160(8): A1304-A1310. [17] UENO K, PARK J W, YAMAZAKI A, et al. Anionic effects on solvate ionic liquid electrolytes in rechargeable lithium-sulfur batteries[J]. Journal of Physical Chemistry C, 2013, 117(40): 20509-20516. [18] CUISINIER M, CABELGUEN P E, ADAMS B D, et al. Unique behaviour of nonsolvents for polysulphides in lithium-sulphur batteries[J]. Energy Environ. Sci., 2014, 7(8): 2697-2705. [19] LU H, YUAN Y, ZHANG K, et al. Application of partially fluorinated ether for improving performance of lithium/sulfur batteries[J]. J. Electrochem. Soc., 2015, 162(8): A1460-A1465. [20] ZU C, AZIMI N, ZHANG Z, et al. Insight into lithium-metal anodes in lithium-sulfur batteries with a fluorinated ether electrolyte[J]. J. Mater. Chem. A, 2015, 3(28): 14864-14870. [21] AZIMI N, XUE Z, BLOOM I, et al. Understanding the effect of a fluorinated ether on the performance of lithium-sulfur batteries[J]. Acs Appl. Mater. Interfaces, 2015, 7 (17): 9169-9177. [22] GU S, QIAN R, JIN J, et al. Suppressing the dissolution of polysulfides with cosolvent fluorinated diether towards high-performance lithium sulfur batteries[J]. Phys. Chem. Chem. Phys., 2016, 18(42): 29293-29299. [23] HAYASHI A, OHTOMO T, MIZUNO F, et al. All-solid-state Li/S batteries with highly conductive glass-ceramic electrolytes[J]. Electrochem. Commun., 2003, 5(8): 701-705. [24] HAYASHI A, OHTOMO T, MIZUNO F, et al. Rechargeable lithium batteries, using sulfur-based cathode materials and Li2S-P2S5 glass-ceramic electrolytes[J]. Electrochim. Acta, 2004, 50(2/3): 893-897. [25] KUHN A, GERBIG F, ZHU C B, et al. A new ultrafast superionic Li-conductor: Ion dynamics in Li11Si2PS12 and comparison with other tetragonal LGPS-type electrolytes[J]. Phys. Chem. Chem. Phys., 2014, 16(28): 14669-14674. [26] YAO X, HUANG N, HAN F, et al. High-performance all-solid-state lithium-sulfur batteries enabled by amorphous sulfur-coated reduced graphene oxide cathodes[J]. Adv. Energy Mater., 2017, doi: 10.1002/aenm.201602923. [27] WANG L, WANG Y G, XIA Y Y. A high performance lithium-ion sulfur battery based on a Li2S cathode using a dual-phase electrolyte[J]. Energy Environ. Sci., 2015, 8(5): 1551-1558. [28] WANG S, DING Y, ZHOU G, et al. Durability of the Li1+xTi2xAlx(PO4)3 solid electrolyte in lithium-sulfur batteries[J]. Acs Energy Letters, 2016, 1(6): 1080-1085. [29] WANG Q S, JIN J, WU X W, et al. A shuttle effect free lithium sulfur battery based on a hybrid electrolyte[J]. Phys. Chem. Chem. Phys., 2014, 16(39): 21225-21229. [30] YU X, BI Z, ZHAO F, et al. Polysulfide-shuttle control in lithium-sulfur batteries with a chemically/electrochemically compatible NaSICON-type solid electrolyte[J]. Adv. Energy Mater., 2016, 6(24): 1601392. [31] HUANG X, SHEN C, RUI K, et al. Influence of La2Zr2O7 additive on densification and Li+ conductivity for Ta-doped Li7La3Zr2O12 garnet[J]. Jom-J. Miner. Met. Mater. Soc., 2016, 68(10): 2593-2600. [32] MA G, WEN Z, JIN J, et al. Enhanced performance of lithium sulfur battery with polypyrrole warped mesoporous carbon/sulfur composite[J]. J. Power Sources, 2014, 254: 353-359. [33] ZHANG C F, WU H B, YUAN C Z, et al. Confining sulfur in double-shelled hollow carbon spheres for lithium-sulfur batteries[J]. Angew. Chem.-Int. Edit., 2012, 51(38): 9592-9595. [34] SEH Z W, LI W Y, CHA J J, et al. Sulphur-TiO2 yolk-shell nanoarchitecture with internal void space for long-cycle lithium-sulphur batteries[J]. Nat. Commun., 2013, 4: 1331-1336. [35] SHI J L, TANG C, PENG H J, et al. 3D mesoporous graphene: CVD self-assembly on porous oxide templates and applications in high-stable Li-S batteries[J]. Small, 2015, 11(39): 5243-5252. [36] JAYAPRAKASH N, SHEN J, MOGANTY S S, et al. Porous hollow carbon@sulfur composites for high-power lithium-sulfur batteries[J]. Angew. Chem.-Int. Edit., 2011, 50(26): 5904-5908. [37] ZHAO M Q, ZHANG Q, HUANG J Q, et al. Unstacked double-layer templated graphene for high-rate lithium-sulphur batteries[J]. Nat. Commun., 2014, 5: 3410-3417. [38] SU Y S, MANTHIRAM A. A facile in situ sulfur deposition route to obtain carbon-wrapped sulfur composite cathodes for lithium-sulfur batteries[J]. Electrochim. Acta, 2012, 77: 272-278. [39] YUAN Z, PENG H J, HUANG H J, et al. Hierarchical free-standing carbon-nanotube paper electrodes with ultrahigh sulfur-loading for lithium-sulfur batteries[J]. Adv. Funct. Mater., 2014, 24(39): 6105-6112. [40] LU S T, CHEN Y, WU X H, et al. Three-dimensional sulfur/graphene multifunctional hybrid sponges for lithium-sulfur batteries with large areal mass loading[J]. Sci. Rep. UK, 2014, 4: 4629-4632. [41] SUN Q, FANG X, WENG W, et al. An aligned and laminated nanostructured carbon hybrid cathode for high-performance lithium-sulfur batteries[J]. Angew. Chem.-Int. Edit., 2015, 54(36): 10539-10544. [42] EVERS S, YIM T, NAZAR L F. Understanding the nature of absorption/adsorption in nanoporous polysulfide sorbents for the Li-S battery[J]. Journal of Physical Chemistry C, 2012, 116(37): 19653-19658. [43] SU Y S, MANTHIRAM A. Lithium-sulphur batteries with a microporous carbon paper as a bifunctional interlayer[J]. Nat. Commun., 2012, 3: 1166-1171. [44] CHUNG S H, MANTHIRAM A. A hierarchical carbonized paper with controllable thickness as a modulable interlayer system for high performance Li-S batteries[J]. Chem. Commun., 2014, 50(32): 4184-4187. [45] BALACH J, JAUMANN T, KLOSE M, et al. Functional mesoporous carbon-coated separator for long-life, high-energy lithium-sulfur batteries[J]. Adv. Funct. Mater., 2015, 25(33): 5285-5291. [46] STOECH U, BALACH J, KLOSE M, et al. Reconfiguration of lithium sulphur batteries: "Enhancement of Li-S cell performance by employing a highly porous conductive separator coating"[J]. J. Power Sources, 2016, 309: 76-81. [47] WANG Q S, WEN Z Y, YANG J H, et al. Electronic and ionic co-conductive coating on the separator towards high-performance lithium-sulfur batteries[J]. J. Power Sources, 2016, 306: 347-353. [48] ZHOU G M, LI L, WANG D W, et al. A flexible sulfur-graphene-polypropylene separator integrated electrode for advanced Li-S batteries[J]. Adv. Mater., 2015, 27(4): 641-647. [49] HUANG J Q, ZHANG Q, PENG H J, et al. Ionic shield for polysulfides towards highly-stable lithium-sulfur batteries[J]. Energy Environ. Sci., 2014, 7(1): 347-353. [50] YU X W, MANTHIRAM A. Performance enhancement and mechanistic studies of room-temperature sodium-sulfur batteries with a carbon-coated functional Nafion separator and a Na2S/activated carbon nanofiber cathode[J]. Chem. Mat., 2016, 28(3): 896-905. [51] LIANG X, WEN Z, LIU Y, et al. Improved cycling performances of lithium sulfur batteries with LiNO3-modified electrolyte[J]. J. Power Sources, 2011, 196(22): 9839-9843. [52] MIKHAYLIK Y V. Electrolytes for lithium sulfur cells: US7354680[P]. 2008. [53] ZHANG S S. Effect of discharge cutoff voltage on reversibility of lithium/sulfur batteries with LiNO3-contained electrolyte[J]. J. Electrochem. Soc., 2012, 159(7): A920-A923. [54] DEMIR-CAKAN R, MORCRETTE M, GANGULIBABU, et al. Li-S batteries: Simple approaches for superior performance[J]. Energy Environ. Sci., 2013, 6(1): 176-182. [55] LIN Z, LIU Z, FU W, et al. Phosphorous pentasulfide as a novel additive for high-performance lithium-sulfur batteries[J]. Adv. Funct. Mater., 2013, 23(8): 1064-1069. [56] MA G Q, WEN Z Y, WU M F, et al. A lithium anode protection guided highly-stable lithium-sulfur battery[J]. Chem. Commun., 2014, 50(91): 14209-14212. [57] HUANG C, XIAO J, SHAO Y Y, et al. Manipulating surface reactions in lithium-sulphur batteries using hybrid anode structures[J]. Nat. Commun., 2014, 5: 3015-3021. [58] WANG J L, YANG J, WAN C R, et al. Sulfur composite cathode materials for rechargeable lithium batteries[J]. Adv. Funct. Mater., 2003, 13(6): 487-492. [59] YU X G, XIE J Y, YANG J, et al. Lithium storage in conductive sulfur-containing polymers[J]. J. Electroanal. Chem., 2004, 573(1): 121-128. [60] KIM J W, OCON J D, PARK D W, et al. Functionalized graphene-based cathode for highly reversible lithium-sulfur batteries[J]. ChemSusChem, 2014, 7(5): 1265-1273. [61] SONG M K, ZHANG Y G, CAIRNS E J. A long-life, high-rate lithium/sulfur cell: A multifaceted approach to enhancing cell performance[J]. Nano Lett., 2013, 13(12): 5891-5899. [62] SHAO J, LI X, ZHANG L, et al. Core-shell sulfur@polypyrrole composites as high-capacity materials for aqueous rechargeable batteries[J]. Nanoscale, 2013, 5(4): 1460-1464. [63] MA G, WEN Z Y, JIN J, et al. Enhancement of long stability of Li-S battery by thin wall hollow spherical structured polypyrrole based sulfur cathode[J]. RSC Adv., 2014, 4(41): 21612-21618. [64] LI G C, LI G R, YE S H, et al. A polyaniline-coated sulfur/carbon composite with an enhanced high-rate capability as a cathode material for lithium/sulfur batteries[J]. Adv. Energy Mater., 2012, 2(10): 1238-1245. [65] XIAO L F, CAO Y L, XIAO J, et al. A soft approach to encapsulate sulfur: polyaniline nanotubes for lithium-sulfur batteries with long cycle life[J]. Adv. Mater., 2012, 24(9): 1176-1181. [66] MA G, WEN Z, JIN J, et al. Hollow polyaniline sphere@sulfur composites for prolonged cycling stability of lithium-sulfur batteries[J]. J. Mater. Chem. A, 2014, 2(27): 10350-10354. [67] WU F, WU S X, CHEN R J, et al. Sulfur-polythiophene composite cathode materials for rechargeable lithium batteries[J]. Electrochemical and Solid State Letters, 2010, 13(4): A29-A31. [68] LI W Y, ZHANG Q F, ZHENG G Y, et al. Understanding the role of different conductive polymers in improving the nanostructured sulfur cathode performance[J]. Nano Lett., 2013, 13(11): 5534-5540. [69] SONG J X, XU T, GORDIN M L, et al. Nitrogen- doped mesoporous carbon promoted chemical adsorption of sulfur and fabrication of high-areal- capacity sulfur cathode with exceptional cycling stability for lithium- sulfur batteries[J]. Adv. Funct. Mater., 2014, 24(9): 1243-1250. [70] WANG C, SU K, WAN W, et al. High sulfur loading composite wrapped by 3D nitrogen-doped graphene as a cathode material for lithium-sulfur batteries[J]. J. Mater. Chem. A, 2014, 2(14): 5018-5023. [71] TAO X, WANG J, YING Z, et al. Strong sulfur binding with conducting magneli-phase TinO2(n1) nanomaterials for improving lithium-sulfur batteries[J]. Nano Lett., 2014, 14(9): 5288-5294. [72] PANG Q, KUNDU D, CUISINIER M, et al. Surface-enhanced redox chemistry of polysulphides on a metallic and polar host for lithium-sulphur batteries[J]. Nat. Commun., 2014, 5: 4759-4766. [73] LIANG X, HART C, PANG Q, et al. A highly efficient polysulfide mediator for lithium-sulfur batteries[J]. Nat. Commun., 2015, 6: 5682-5689. [74] LIANG X, GARSUCH A, NAZAR L F. Sulfur cathodes based on conductive MXene nanosheets for high-performance lithium-sulfur batteries[J]. Angew. Chem.-Int. Edit., 2015, 54(13): 3907-3911. |
[1] | Yuzuo WANG, Jin WANG, Yinli LU, Dianbo RUAN. Study on the effects of pore structure on lithium-storage performances for soft carbon [J]. Energy Storage Science and Technology, 2022, 11(7): 2023-2029. |
[2] | Yingwei PEI, Hong ZHANG, Xinghui WANG. Recent advances in the electrolytes of rechargeable zinc-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(7): 2075-2082. |
[3] | Xiongwen XU, Yang NIE, Jian TU, Zheng XU, Jian XIE, Xinbing ZHAO. Abuse performance of pouch-type Na-ion batteries based on Prussian blue cathode [J]. Energy Storage Science and Technology, 2022, 11(7): 2030-2039. |
[4] | Sida HUO, Wendong XUE, Xinli LI, Yong LI. Visualization analysis of composite electrolytes for lithium battery based on CiteSpace [J]. Energy Storage Science and Technology, 2022, 11(7): 2103-2113. |
[5] | Jianxiang DENG, Jinliang ZHAO, Chengde HUANG. High energy density lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(7): 2092-2102. |
[6] | Xiaoyu SHEN, Guanjun CEN, Ronghan QIAO, Jing ZHU, Hongxiang JI, Mengyu TIAN, Zhou JIN, Yong YAN, Yida WU, Yuanjie ZHAN, Hailong YU, Liubin BEN, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Apr. 1, 2022 to May 31, 2022) [J]. Energy Storage Science and Technology, 2022, 11(7): 2007-2022. |
[7] | ZHANG Yan, WANG Hai, LIU Zhaomeng, ZHANG Deliu, WANG Jiadong, LI Jianzhong, GAO Xuanwen, LUO Wenbin. Research progress of nickel-rich ternary cathode material ncm for lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1693-1705. |
[8] | OU Yu, HOU Wenhui, LIU Kai. Research progress of smart safety electrolytes in lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1772-1787. |
[9] | XIAO Zhexi, LU Feng, LIN Xianqing, ZHANG Chenxi, BAI Haolong, YU Chunhui, HE Ziying, JIANG Hairong, WEI Fei. Mass production of SiO x @C anode material in gas-solid fluidized bed [J]. Energy Storage Science and Technology, 2022, 11(6): 1739-1748. |
[10] | YAN Qiaoyi, WU Feng, CHEN Renjie, LI Li. Recovery and resource recycling of graphite anode materials for spent lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1760-1771. |
[11] | SHI Peng, ZHAI Ximin, YANG Hejie, ZHAO Chenzi, YAN Chong, BIE Xiaofei, JIANG Tao, ZHANG Qiang. Recent advances in composite lithium anode under practical conditions [J]. Energy Storage Science and Technology, 2022, 11(6): 1725-1738. |
[12] | ZHOU Weidong, HUANG Qiu, XIE Xiaoxin, CHEN Kejun, LI Wei, QIU Jieshan. Research progress of polymer electrolyte for solid state lithium batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1788-1805. |
[13] | LI Yitao, SHEN Kaier, PANG Quanquan. Advance in organics enhanced sulfide-based solid-state batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1902-1918. |
[14] | ZHOU Wei, FU Dongju, LIU Weifeng, CHEN Jianjun, HU Zhao, ZENG Xierong. Research progress on recycling technology of waste lithium iron phosphate power battery [J]. Energy Storage Science and Technology, 2022, 11(6): 1854-1864. |
[15] | WANG Yuzuo, DENG Miao, WANG Jin, YANG Bin, LU Yinli, JIN Ge, RUAN Dianbo. Study on the effects of carbonization temperature on lithium-storage kinetics for soft carbon [J]. Energy Storage Science and Technology, 2022, 11(6): 1715-1724. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||