[1] PREET S. Water and phase change material based photovoltaic thermal management systems:A review[J]. Renewable & Sustainable Energy Reviews, 2018, 82(1):791-807.
[2] ABDULATEEF A M, MAT S, ABDULATEEF J, et al. Geometric and design parameters of fins employed for enhancing thermal energy storage systems:A review[J]. Renewable & Sustainable Energy Reviews, 2018, 82(1):1620-1635.
[3] CHIRINO H, XU B, XU X, et al. Generalized diagrams of energy storage efficiency for latent heat thermal storage system in concentrated solar power plant[J]. Applied Thermal Engineering, 2018, 129:1595-1603.
[4] FINCK C, LI R, KRAMER R, et al. Quantifying demand flexibility of power-to-heat and thermal energy storage in the control of building heating systems[J]. Applied Energy, 2018, 209:409-425.
[5] QURESHI W A, NAIR N K, FARID M M. Impact of energy storage in buildings on electricity demand side management[J]. Energy Conversion & Management, 2011, 52(5):2110-2120.
[6] YANG L, ZHANG X, XU G. Thermal performance of a solar storage packed bed using spherical capsules filled with PCM having different melting points[J]. Energy & Buildings, 2014, 68(1):639-646.
[7] PARAMESHWARAN R, KALAISELVAM S. Energy conservative air conditioning system using silver nano-based PCM thermal storage for modern buildings[J]. Energy & Buildings, 2014, 69(2):202-212.
[8] NOMURA T, OYA T, OKINAKA N, et al. Feasibility of an advanced waste heat transportation system using high-temperature phase change material (PCM)[J]. Isij International, 2010, 50(9):1326-1332.
[9] IZQUIERDO-BARRIENTOS M A, BELMONTE J F, RODRÍGUEZ-SÁNCHEZ D, et al. A numerical study of external building walls containing phase change materials (PCM)[J]. Applied Thermal Engineering, 2012, 47:73-85.
[10] AGYENIM F, EAMES P, SMYTH M. Experimental study on the melting and solidification behaviour of a medium temperature phase change storage material (Erythritol) system augmented with fins to power a LiBr/H2O absorption cooling system[J]. Renewable Energy, 2011, 36(1):108-117.
[11] FOK S C, SHEN W, TAN F L. Cooling of portable hand-held electronic devices using phase change materials in finned heat sinks[J]. International Journal of Thermal Sciences, 2010, 49(1):109-117.
[12] LI W Q, Qu Z G, He Y L, et al. Experimental and numerical studies on melting phase change heat transfer in open-cell metallic foams filled with paraffin[J]. Appl. Therm. Eng., 2012, 37:1-9.
[13] GE Z, YE F, Cao H, et al. Carbonate-salt-based composite materials for medium-and high-temperature thermal energy storage[J]. Particuology 2014, 15:77-81.
[14] ISMAIL K A, LINO F A. Fins and turbulence promoters for heat transfer enhancement in latent heat storage systems[J]. Exp. Therm. Fluid Sci., 2011, 35:1010-1018.
[15] HOSSEINIZADEH S F, DARZI A A, TAN F L. Numerical investigations of unconstrained melting of nano-enhanced phase change material (NEPCM) inside a spherical container[J]. International Journal of Thermal Sciences, 2012, 51(1):77-83.
[16] MAHDI J M, NSOFOR E C. Solidification enhancement in a triplex-tube latent heat energy storage system using nanoparticles-metal foam combination[J]. Applied Energy, 2017, 191:501-512.
[17] YAZICI M Y, AVCI M, AYDIN O, et al. On the effect of eccentricity of a horizontal tube-in-shell storage unit on solidification of a PCM[J]. Applied Thermal Engineering, 2014, 64(1/2):1-9.
[18] WANG P, WANG X, HUANG Y, et al. Thermal energy charging behaviour of a heat exchange device with a zigzag plate configuration containing multi-phase-change-materials (m-PCMs)[J]. Applied Energy, 2015, 142(3):328-336.
[19] MAT S, AL-ABIDI A A, SOPIAN K, et al. Enhance heat transfer for PCM melting in triplex tube with internal-external fins[J]. Energy Conversion & Management, 2013, 74(5):223-236.
[20] PROMOPPATUM P, YAO S C, HULTZ T, et al. Experimental and numerical investigation of the cross-flow PCM heat exchanger for the energy saving of building HVAC[J]. Energy & Buildings, 2017, 138:468-478. |