The electrochemical synthesis of H2O2 via oxygen reduction reaction (ORR) is a low-cost, environment-friendly, and green synthesis method. However, the kinetics of ORR is very slow, and is also accompanied by the competitive reaction of 4 electron (4e-) ORR to generate H2O. The catalysts are therefore required. In recent years, carbon-based materials with low prices, abundant resources, competitive activity, and easy adjustability, have received extensive attention in this field. Herein, this review first briefly introduces the mechanism of ORR to the synthesis of H2O2, and the key factors of the catalytic performance of electrochemical synthesis of H2O2. Further, the strategy to improve the ORR activity and selectivity of carbon-based catalysts is reviewed, in which the doping of non-metallic atoms and the construction of transition metal single atoms on carbon-based materials are emphasized. Finally, the existing problems, challenges, and perspectives of carbon-based catalysts toward the electrosynthesis of H2O2 were described.
HE Feng. Recent progress on carbon-based catalysts for electrochemical synthesis of H2O2 via oxygen reduction reaction[J]. Energy Storage Science and Technology, 2021, 10(6): 1963-1976
Fig. 3
(a) bonding type of N incorporated into graphite; (b) proportion and content of N bonding types in G-COF after being treated at different temperature; (c) proposed mechanism of electrochemical 2e- ORR on N-doped carbon catalysts [58]; (d) XANES spectrum of N-FLG series catalyst [59]
Fig. 4
The relationship between the selectivity of H2O2 current (a) and (b) and the oxygen content of O-CNT [41]; FTIR spectrum (c) and XPS O1s spectrum (d) of rGO-KBH4 and rGO-KOH [60]
Fig. 5
(a) SEM, TEM and HRTEM images of N, F-codoped carbon nanocage; (b) number of transferred electrons and H2O2 selectivity of NF-Cs, F-Cs, and N-Cs catalysts; (c) FE of H2O2 produced of electrolysis at different fixed potentials using a NF-Cs electrode [62]; (d) Illustration of ORR reactions of B,N co-doped samples; (e) N-C, BN-C1, and BN-C2 catalyst: H2O2 selectivity at the applied potentials; (f) stability of BN-C1 sample [87]
Fig. 6
(a) schematic illustration of all the metal atoms and considered SACs; (b) variations of ΔG(*O) and ΔG(*OOH) on the 31 studied SACs [34]; (c) Linear sweep voltammetry (LSV) curves in rotating ring-disk electrode (RRDE) measurements; (d) H2O2 selectivity (%) and the number of electrons (n) derived from RRDE data; (e) thermodynamic relations (volcano) lines for the 2e- (green solid line) and 4e- ORR (black solid line). The DFT calculated ORR onset potential values (circles) are on the left y-axis, while the experimental current densities (crosses and triangles), reported as ln(|j|), are on the right y-axis [45]
在提升Co-N-C类催化剂的性能方面,目前普遍认同的方法是引入含氧官能团。2019年,Li等[67]用硝酸氧化热解后的钴卟啉,将含氧官能团引入Co-N-C催化剂。测试结果显示,催化剂催化H2O2的产率和法拉第效率分别达813 mg/(L·h)和64.1%。这说明引入含氧官能团能够进一步提升Co-N-C的催化性能。对于该现象产生的原因以及发挥作用的含氧官能团类型,Minhee等[46]从几何效应出发给出了自己的观点。作者认为,M-N-C(尤其是Fe-N-C)存在包括本体M,掺杂物种N以及活性构型M-Nx-Cy在内的多种活性位点,而由于多种活性位点分布的不均一性,导致多个催化位点串联催化,使得“末端”吸附的氧气的另一端被毗邻的催化位点吸引而转变为“侧向”吸附,致使过渡金属氮碳类材料的选择性有所下降[图7(a)]。而引入含氧官能团就是预先占据部分活性位点以减少这种现象的发生。之后,Euiyeon等[43]从电子效应出发,通过DFT理论计算,给出了含氧官能团提高Co-N-C催化性能的可能原因。作者发现改变Co-N4附近连接的官能团可以调节其对氧气的吸附能[△G(*OOH)],富电子物质(如O等)的引入,可以提高△G(*OOH);反之缺电子物质(如H)则会导致△G(*OOH)下降[图7(b)]。而含氧官能团能与Co-N-C协同催化,正是因为氧的引入使Co-N4对氧气的吸附能△G(*OOH)更逼近火山顶部的最佳值。基于此,作者在NH3氛围下通过煅烧将Co原子引入GO,合成的Co-N-C(O)催化剂H2O2的产率高达(418±19)mmol/(gcat·h),且110 h后依旧可以保持98.7%的活性。不过,上述两篇文献更多的是从氧原子的角度出发解释了含氧官能团能提升Co-N-C催化性能的原因,对于发挥作用的含氧官能团类型并没有展开介绍。Zhang等[67]通过电化学处理对久置的Co-N-C催化剂进行激活,发现激活后的催化性能大幅提升,甚至超过了新制的Co-N-C催化剂。通过对比电激活前后的XPS O 1s谱[图7(c)、(d)]可以看出,久置的Co-N-C催化剂其羰基[C=O,O1,(531.2±0.2) eV]含量大大提升,而电激活后催化剂性能随环氧基/羟基[O2,(532.3±0.2) eV]含量的提升而提升。通过与H2O2氧化处理与热碱处理的结果对比,作者推测环氧基对Co-N-C催化性能的提升发挥着重要作用。
图7
(a) 模拟的M-N-C催化剂氧化前后催化位点和氧气吸附变化[46];(b) 通过ORR产生H2O(蓝色)和H2O2(红色)计算出的催化活性火山[43];(c) 老化后CoN@CNTs的XPS O 1s光谱;(d) CoN@CNTs的XPS O 1s光谱[67];(e) 通过2e-(红色)或4e-(黑色)路径计算不同构型SACs的ORR活火山图;(f) *OOH吸附能与活性位(O邻C原子)电荷态的相关性[88]
Fig. 7
(a) simulated Me-N-C catalyst before and after oxidation changes in catalytic sites and oxygen adsorption [46]; (b) calculated catalytic activity volcanoes for the production of H2O (blue) and H2O2 (red) via the ORR (bottom panel) [43]; XPS O 1s spectra of (c) aged CoN@CNTs (d) EA-CoN@CNTs [67]; (e) computed activity volcano plots of ORR via the 2e- (red color) or 4e- (black) pathway for SACs with varied configurations; (f) correlation between the *OOH adsorption energies and charge state of the active site (O-adjacent C atom) [88]
图8
(a) Co-TPP的化学结构和Co-PB-1(6) 和Co-rPB-1(6) 的最低能量构象模型;(b) 每种催化剂对应的H2O2法拉第效率[89];(c) 分层独立式Co单原子电极制备示意图;(d) Co SA/CC和Co-P/CC的Nyquist图,插图为等效电路[44]
Fig. 8
(a) chemical structure of Co-TPP and computed lowest energy conformational models of Co-PB-1(6) and Co-rPB-1(6); (b) the corresponding H2O2 Faradaic efficiencies for each catalyst [89]; (c) schematic illustration showing the preparation of hierarchical, free‐standing single-Co-atom electrode; (d) Nyquist plots of Co SA/CC and Co-P/CC, Inset shows the equivalent circuit [44]
YANG S, VERDAGUER-CASADEVALL A, ARNARSON L, et al. Toward the decentralized electrochemical production of H2O2: A focus on the catalysis[J]. ACS Catalysis, 2018, 8(5): 4064-4081.
ZHANG B S, XU W W, LU Z Y, et al. Recent progress on carbonaceous material engineering for electrochemical hydrogen peroxide generation[J]. Transactions of Tianjin University, 2020, 26(3): 188-196.
CAMPOS-MARTIN J M, BLANCO-BRIEVA G, FIERRO J L G. Hydrogen peroxide synthesis: An outlook beyond the anthraquinone process[J]. Angewandte Chemie International Edition, 2006, 45(42): 6962-6984.
YI Y H, WANG L, LI G, et al. A review on research progress in the direct synthesis of hydrogen peroxide from hydrogen and oxygen: Noble-metal catalytic method, fuel-cell method and plasma method[J]. Catalysis Science & Technology, 2016, 6(6): 1593-1610.
HU C C. Foreign recent status of research and development on preparation of propylene oxide by epoxidation of propylene with hydrogen peroxide[J]. Chemical Propellants & Polymeric Materials, 2006, 4(2): 1-5, 10.
CHUNG T H, MESHREF M N A, HAI F I, et al. Microbial electrochemical systems for hydrogen peroxide synthesis: Critical review of process optimization, prospective environmental applications, and challenges[J]. Bioresource Technology, 2020, 313: https://core.ac.uk/display/343451114.
JIANG Y Y, NI P J, CHEN C X, et al. Selective electrochemical H2O2 production through two-electron oxygen electrochemistry[J]. Advanced Energy Materials, 2018, 8(31): doi: 10.1002/adma. 201801909.
SONG J, CHO S. Catalytic materials for efficient electrochemical production of hydrogen peroxide[J]. APL Materials, 2020, 8(5): doi: 10.1063/5.0002845.
LEE S, CHUNG Y M. An efficient Pd/C catalyst design based on sequential ligand exchange method for the direct synthesis of H2O2[J]. Materials Letters, 2019, 234: 58-61.
TIAN P F, DING D D, SUN Y, et al. Theoretical study of size effects on the direct synthesis of hydrogen peroxide over palladium catalysts[J]. Journal of Catalysis, 2019, 369: 95-104.
PUTHIARAJ P, YU K, AHN W S, et al. Pd nanoparticles on a dual acid-functionalized porous polymer for direct synthesis of H2O2: Contribution by enhanced H2 storage capacity[J]. Journal of Industrial and Engineering Chemistry, 2020, 81: 375-384.
TERANISHI M, KUNIMOTO T, NAYA S I, et al. Visible-light-driven hydrogen peroxide synthesis by a hybrid photocatalyst consisting of bismuth vanadate and bis(hexafluoroacetylacetonato)copper(II) complex[J]. The Journal of Physical Chemistry C, 2020, 124(6): 3715-3721.
XU Q, ZHAO P, SHI Y K, et al. Preparation of a g-C3N4/Co3O4/Ag2O ternary heterojunction nanocomposite and its photocatalytic activity and mechanism[J]. New Journal of Chemistry, 2020, 44(16): 6261-6268.
ZHANG P, TONG Y W, LIU Y, et al. Heteroatom dopants promote two-electron O2 reduction for photocatalytic production of H2O2 on polymeric carbon nitride[J]. Angewandte Chemie International Edition, 2020, 59(37): 16209-16217.
KO Y J, CHOI K, YANG B, et al. A catalyst design for selective electrochemical reactions: Direct production of hydrogen peroxide in advanced electrochemical oxidation[J]. Journal of Materials Chemistry A, 2020, 8(19): 9859-9870.
SONG X, LI N, ZHANG H, et al. Graphene-supported single nickel atom catalyst for highly selective and efficient hydrogen peroxide production[J]. ACS Applied Materials & Interfaces, 2020, 12(15): 17519-17527.
TANG C, JIAO Y, SHI B, et al. Coordination tunes selectivity: Two-electron oxygen reduction on high-loading molybdenum single-atom catalysts[J]. Angewandte Chemie International Edition, 2020, 59(23): 9171-9176.
JUNG E, SHIN H, HOOCH ANTINK W, et al. Correction to "recent advances in electrochemical oxygen reduction to H2O2: Catalyst and cell design"[J]. ACS Energy Letters, 2020, 5(6): doi: 10.1021/acsenergylett.0c01151.
CHOI C H, KWON H C, YOOK S, et al. Hydrogen peroxide synthesis via enhanced two-electron oxygen reduction pathway on carbon-coated Pt surface[J]. The Journal of Physical Chemistry C, 2014, 118(51): 30063-30070.
CHOI C H, KIM M, KWON H C, et al. Tuning selectivity of electrochemical reactions by atomically dispersed platinum catalyst[J]. Nature Communications, 2016, 7: 10922-10931.
LEDENDECKER M, PIZZUTILO E, MALTA G, et al. Isolated Pd sites as selective catalysts for electrochemical and direct hydrogen peroxide synthesis[J]. ACS Catalysis, 2020, 10(10): 5928-5938.
FORTUNATO G V, PIZZUTILO E, MINGERS A M, et al. Impact of palladium loading and interparticle distance on the selectivity for the oxygen reduction reaction toward hydrogen peroxide[J]. The Journal of Physical Chemistry C, 2018, 122(28): 15878-15885.
LEE S, CHUNG Y M. Direct synthesis of H2O2 over acid-treated Pd/C catalyst derived from a Pd-Co core-shell structure[J]. Catalysis Today, 2020, 352: 270-278.
PIZZUTILO E, KASIAN O, CHOI C H, et al. Electrocatalytic synthesis of hydrogen peroxide on Au-Pd nanoparticles: From fundamentals to continuous production[J]. Chemical Physics Letters, 2017, 683: 436-442.
SIAHROSTAMI S, VERDAGUER-CASADEVALL A, KARAMAD M, et al. Enabling direct H2O2 production through rational electrocatalyst design[J]. Nature Materials, 2013, 12(12): 1137-1143.
YANG Z F, JIAO R, ZHANG W L, et al. Research progress of cathodic oxygen reduction non-platinum catalyst for fuel cell[J]. New Chemical Materials, 2019, 47(11): 227-231.
WANG Q, SHAN G L, SUN-WATERHOUSE D, et al. Engineering local coordination environments and site densities for high-performance Fe-N-C oxygen reduction reaction electrocatalysis[J]. SmartMat, 2021, 2(2): 154-175.
WANG X, VASILEFF A, JIAO Y, et al. Electronic and structural engineering of carbon-based metal-free electrocatalysts for water splitting[J]. Advanced Materials, 2019, 31(13): doi: 10.1002/adma.201803625.
VISWANATHAN V, HANSEN H A, ROSSMEISL J, et al. Unifying the 2e- and 4e- reduction of oxygen on metal surfaces[J]. The Journal of Physical Chemistry Letters, 2012, 3(20): 2948-2951.
ZHANG J Y, ZHANG H C, CHENG M J, et al. Tailoring the electrochemical production of H2O2: Strategies for the rational design of high-performance electrocatalysts[J]. Small, 2020, 16(15): doi: 10.1002/smll.201902845.
GUO X Y, LIN S R, GU J X, et al. Simultaneously achieving high activity and selectivity toward two-electron O2 electroreduction: The power of single-atom catalysts[J]. ACS Catalysis, 2019, 9(12): 11042-11054.
KIM J H, KIM Y T, JOO S H. Electrocatalyst design for promoting two-electron oxygen reduction reaction: Isolation of active site atoms[J]. Current Opinion in Electrochemistry, 2020, 21: 109-116.
OLOMAN C, WATKINSON A P. Hydrogen peroxide production in trickle-bed electrochemical reactors[J]. Journal of Applied Electrochemistry, 1979, 9(1): 117-123.
LEE Y H, LI F, CHANG K H, et al. Novel synthesis of N-doped porous carbons from collagen for electrocatalytic production of H2O2[J]. Applied Catalysis B: Environmental, 2012, 126: 208-214.
ZHU Y S, QIU S, MA F, et al. Melamine-derived carbon electrode for efficient H2O2 electro-generation[J]. Electrochimica Acta, 2018, 261: 375-383.
LU Z Y, CHEN G X, SIAHROSTAMI S, et al. High-efficiency oxygen reduction to hydrogen peroxide catalysed by oxidized carbon materials[J]. Nature Catalysis, 2018, 1(2): 156-162.
XIA Y, SHANG H, ZHANG Q G, et al. Electrogeneration of hydrogen peroxide using phosphorus-doped carbon nanotubes gas diffusion electrodes and its application in electro-Fenton[J]. Journal of Electroanalytical Chemistry, 2019, 840: 400-408.
JUNG E, SHIN H, LEE B H, et al. Atomic-level tuning of Co-N-C catalyst for high-performance electrochemical H2O2 production[J]. Nature Materials, 2020, 19(4): 436-442.
ZHANG J C, YANG H B, GAO J J, et al. Design of hierarchical, three-dimensional free-standing single-atom electrode for H2O2 production in acidic media[J]. Carbon Energy, 2020, 2(2): 276-282.
SUN Y, SILVIOLI L, SAHRAIE N R, et al. Activity-selectivity trends in the electrochemical production of hydrogen peroxide over single-site metal-nitrogen-carbon catalysts[J]. Journal of the American Chemical Society, 2019, 141(31): 12372-12381.
SUK M, CHUNG M W, HAN M H, et al. Selective H2O2 production on surface-oxidized metal-nitrogen-carbon electrocatalysts[J]. Catalysis Today, 2021, 359: 99-105.
SA Y J, KIM J H, JOO S H. Active edge-site-rich carbon nanocatalysts with enhanced electron transfer for efficient electrochemical hydrogen peroxide production[J]. Angewandte Chemie International Edition, 2019, 58(4): 1100-1105.
LIU Y, ZHANG J S, HE S Q, et al. Defect engineering of single-walled carbon nanohorns for stable electrochemical synthesis of hydrogen peroxide with high selectivity in neutral electrolytes[J]. Journal of Energy Chemistry, 2021, 54: 118-123.
SAN ROMAN D, KRISHNAMURTHY D, GARG R, et al. Engineering three-dimensional (3D) out-of-plane graphene edge sites for highly selective two-electron oxygen reduction electrocatalysis[J]. ACS Catalysis, 2020, 10(3): 1993-2008.
FORTI J C, ROCHA R S, LANZA M R V, et al. Electrochemical synthesis of hydrogen peroxide on oxygen-fed graphite/PTFE electrodes modified by 2-ethylanthraquinone[J]. Journal of Electroanalytical Chemistry, 2007, 601(1/2): 63-67.
BABAEI-SATI R, BASIRI PARSA J. Electrogeneration of H2O2 using graphite cathode modified with electrochemically synthesized polypyrrole/MWCNT nanocomposite for electro-Fenton process[J]. Journal of Industrial and Engineering Chemistry, 2017, 52: 270-276.
VALIM R B, REIS R M, CASTRO P S, et al. Electrogeneration of hydrogen peroxide in gas diffusion electrodes modified with tert-butyl-anthraquinone on carbon black support[J]. Carbon, 2013, 61: 236-244.
XIAO X, WANG T J, BAI J, et al. Enhancing the selectivity of H2O2 electrogeneration by steric hindrance effect[J]. ACS Applied Materials & Interfaces, 2018, 10(49): 42534-42541.
YU F K, ZHOU M H, YU X M. Cost-effective electro-Fenton using modified graphite felt that dramatically enhanced on H2O2 electro-generation without external aeration[J]. Electrochimica Acta, 2015, 163: 182-189.
HASANZADEH A, KHATAEE A, ZAREI M, et al. Two-electron oxygen reduction on fullerene C60-carbon nanotubes covalent hybrid as a metal-free electrocatalyst[J]. Scientific Reports, 2019, 9: 13780-13793.
YANG W L, ZHOU M H, CAI J J, et al. Ultrahigh yield of hydrogen peroxide on graphite felt cathode modified with electrochemically exfoliated graphene[J]. Journal of Materials Chemistry A, 2017, 5(17): 8070-8080.
SUN Y Y, SINEV I, JU W, et al. Efficient electrochemical hydrogen peroxide production from molecular oxygen on nitrogen-doped mesoporous carbon catalysts[J]. ACS Catalysis, 2018, 8(4): 2844-2856.
ZHANG J Y, ZHANG G, JIN S Y, et al. Graphitic N in nitrogen-Doped carbon promotes hydrogen peroxide synthesis from electrocatalytic oxygen reduction[J]. Carbon, 2020, 163: 154-161.
LI L Q, TANG C, ZHENG Y, et al. Tailoring selectivity of electrochemical hydrogen peroxide generation by tunable pyrrolic-nitrogen-carbon[J]. Advanced Energy Materials, 2020, 10(21): doi: 10.1002/aenm.202000789.
ZHAO K, SU Y, QUAN X, et al. Enhanced H2O2 production by selective electrochemical reduction of O2 on fluorine-doped hierarchically porous carbon[J]. Journal of Catalysis, 2018, 357: 118-126.
JIA N, YANG T, SHI S F, et al. N, F-codoped carbon nanocages: An efficient electrocatalyst for hydrogen peroxide electroproduction in alkaline and acidic solutions[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(7): 2883-2891.
ZHAO H, SHEN X, CHEN Y, et al. A COOH-terminated nitrogen-doped carbon aerogel as a bulk electrode for completely selective two-electron oxygen reduction to H2O2[J]. Chemical Communications, 2019, 55(44): 6173-6176.
LI B Q, ZHAO C X, LIU J N, et al. Electrosynthesis of hydrogen peroxide synergistically catalyzed by atomic CO-Nx-C sites and oxygen functional groups in noble-metal-free electrocatalysts[J]. Advanced Materials, 2019, 31(35): doi: 10.1002/adma.201808173.
GAO J J, YANG H B, HUANG X, et al. Enabling direct H2O2 production in acidic media through rational design of transition metal single atom catalyst[J]. Chem, 2020, 6(3): 658-674.
ZHANG Q R, TAN X, BEDFORD N M, et al. Direct insights into the role of epoxy groups on cobalt sites for acidic H2O2 production[J]. Nature Communications, 2020, 11: 4181-4191.
JIANG K, BACK S, AKEY A J, et al. Highly selective oxygen reduction to hydrogen peroxide on transition metal single atom coordination[J]. Nature Communications, 2019, 10(1): 3997-4008.
ZHONG G Y, WANG H J, YU H, et al. A review of carbon-based non-noble catalysts for oxygen reduction reaction[J]. Acta Chimica Sinica, 2017, 75(10): 943-966.
HE W, WANG Y, JIANG C, et al. Structural effects of a carbon matrix in non-precious metal O2- reduction electrocatalysts[J]. Chemical Society Reviews, 2016, 45(9): 2396-2409.
GONG K, DU F, XIA Z, et al. Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction[J]. Science, 2009, 323(5915): 760-764.
SUN Y, LI S, JOVANOV Z P, et al. Structure, activity, and faradaic efficiency of nitrogen-doped porous carbon catalysts for direct electrochemical hydrogen peroxide production[J]. ChemSusChem, 2018, 11(19): 3388-3395.
RAO C V, CABRERA C R, ISHIKAWA Y. In search of the active site in nitrogen-doped carbon nanotube electrodes for the oxygen reduction reaction[J]. The Journal of Physical Chemistry Letters, 2010, 1(18): 2622-2627.
GUO D, SHIBUYA R, AKIBA C, et al. Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts[J]. Science, 2016, 351(6271): 361-365.
IGLESIAS D, GIULIANI A, MELCHIONNA M, et al. N-doped graphitized carbon nanohorns as a forefront electrocatalyst in highly selective O2 reduction to H2O2[J]. Chem, 2018, 4(1): 106-123.
BI Z H, KONG Q Q, CAO Y F, et al. Biomass-derived porous carbon materials with different dimensions for supercapacitor electrodes: A review[J]. Journal of Materials Chemistry A, 2019, 7(27): 16028-16045.
ZHANG F P, LIU L, CHEN L, et al. A cellulose dissolution and encapsulation strategy to prepare carbon nanospheres with ultra-small size and high nitrogen content for the oxygen reduction reaction[J]. New Journal of Chemistry, 2020, 44(25): 10613-10620.
YANG Y R, HE F, SHEN Y F, et al. A biomass derived N/C-catalyst for the electrochemical production of hydrogen peroxide[J]. Chemical Communications, 2017, 53(72): 9994-9997.
LIAO M J, WANG Y L, LI S S, et al. Electrocatalyst derived from abundant biomass and its excellent activity for in situ H2O2 production[J]. ChemElectroChem, 2019, 6(18): 4877-4884.
MIAO J, ZHU H, TANG Y, et al. Graphite felt electrochemically modified in H2SO4 solution used as a cathode to produce H2O2 for pre-oxidation of drinking water[J]. Chemical Engineering Journal, 2014, 250: 312-318.
LU X Y, WANG D, WU K H, et al. Oxygen reduction to hydrogen peroxide on oxidized nanocarbon: Identification and quantification of active sites[J]. Journal of Colloid and Interface Science, 2020, 573: 376-383.
KIM H W, ROSS M B, KORNIENKO N, et al. Efficient hydrogen peroxide generation using reduced graphene oxide-based oxygen reduction electrocatalysts[J]. Nature Catalysis, 2018, 1(4): 282-290.
HONDA K, WAKI Y, MATSUMOTO A, et al. Amorphous carbon having higher catalytic activity toward oxygen reduction reaction: Quinone and carboxy groups introduced onto its surface[J]. Diamond and Related Materials, 2020, 107: doi: 10.1016/j.diamond.2020.107900.
KIM H W, PARK H, ROH J S, et al. Carbon defect characterization of nitrogen-doped reduced graphene oxide electrocatalysts for the two-electron oxygen reduction reaction[J]. Chemistry of Materials, 2019, 31(11): 3967-3973.
KIM H W, BUKAS V J, PARK H, et al. Mechanisms of two-electron and four-electron electrochemical oxygen reduction reactions at nitrogen-doped reduced graphene oxide[J]. ACS Catalysis, 2020, 10(1): 852-863.
CHEN S, CHEN Z, SIAHROSTAMI S, et al. Designing boron nitride Islands in carbon materials for efficient electrochemical synthesis of hydrogen peroxide[J]. Journal of the American Chemical Society, 2018, 140(25): 7851-7859.
TANG C, CHEN L, LI H J, et al. Tailoring acidic oxygen reduction selectivity on single-atom catalysts via modification of first and second coordination spheres[J]. Journal of the American Chemical Society, 2021, 143(20): 7819-7827.
SMITH P T, KIM Y, BENKE B P, et al. Supramolecular tuning enables selective oxygen reduction catalyzed by cobalt porphyrins for direct electrosynthesis of hydrogen peroxide[J]. Angewandte Chemie International Edition, 2020, 59(12): 4902-4907.
ZHU C Z, FU S F, SONG J H, et al. Self-assembled Fe-N-doped carbon nanotube aerogels with single-atom catalyst feature as high-efficiency oxygen reduction electrocatalysts[J]. Small, 2017, 13(15): doi: 10.1002/smll.201603407.
HE Y, GUO H, HWANG S, et al. Single cobalt sites dispersed in hierarchically porous nanofiber networks for durable and high-power PGM-free cathodes in fuel cells[J]. Advanced Materials, 2020, 32(46): doi: 10.1002/adma.202003577.
... [34];(c) 在旋转圆盘电极(RRDE)中的线性扫描曲线(LSV);(d) 计算得出的H2O2选择性(%)和电子转移数(n);(e) 2e-途径(绿线)和4e-途径(黑线)的热力学关系(火山)线,DFT计算的ORR起始电势值(圆圈)在左侧y轴上,实验测得电流密度ln(|j|)(十字和三角)在右侧y轴[45](a) schematic illustration of all the metal atoms and considered SACs; (b) variations of ΔG(*O) and ΔG(*OOH) on the 31 studied SACs [34]; (c) Linear sweep voltammetry (LSV) curves in rotating ring-disk electrode (RRDE) measurements; (d) H2O2 selectivity (%) and the number of electrons (n) derived from RRDE data; (e) thermodynamic relations (volcano) lines for the 2e- (green solid line) and 4e- ORR (black solid line). The DFT calculated ORR onset potential values (circles) are on the left y-axis, while the experimental current densities (crosses and triangles), reported as ln(|j|), are on the right y-axis [45]Fig. 6
在提升Co-N-C类催化剂的性能方面,目前普遍认同的方法是引入含氧官能团.2019年,Li等[67]用硝酸氧化热解后的钴卟啉,将含氧官能团引入Co-N-C催化剂.测试结果显示,催化剂催化H2O2的产率和法拉第效率分别达813 mg/(L·h)和64.1%.这说明引入含氧官能团能够进一步提升Co-N-C的催化性能.对于该现象产生的原因以及发挥作用的含氧官能团类型,Minhee等[46]从几何效应出发给出了自己的观点.作者认为,M-N-C(尤其是Fe-N-C)存在包括本体M,掺杂物种N以及活性构型M-Nx-Cy在内的多种活性位点,而由于多种活性位点分布的不均一性,导致多个催化位点串联催化,使得“末端”吸附的氧气的另一端被毗邻的催化位点吸引而转变为“侧向”吸附,致使过渡金属氮碳类材料的选择性有所下降[图7(a)].而引入含氧官能团就是预先占据部分活性位点以减少这种现象的发生.之后,Euiyeon等[43]从电子效应出发,通过DFT理论计算,给出了含氧官能团提高Co-N-C催化性能的可能原因.作者发现改变Co-N4附近连接的官能团可以调节其对氧气的吸附能[△G(*OOH)],富电子物质(如O等)的引入,可以提高△G(*OOH);反之缺电子物质(如H)则会导致△G(*OOH)下降[图7(b)].而含氧官能团能与Co-N-C协同催化,正是因为氧的引入使Co-N4对氧气的吸附能△G(*OOH)更逼近火山顶部的最佳值.基于此,作者在NH3氛围下通过煅烧将Co原子引入GO,合成的Co-N-C(O)催化剂H2O2的产率高达(418±19)mmol/(gcat·h),且110 h后依旧可以保持98.7%的活性.不过,上述两篇文献更多的是从氧原子的角度出发解释了含氧官能团能提升Co-N-C催化性能的原因,对于发挥作用的含氧官能团类型并没有展开介绍.Zhang等[67]通过电化学处理对久置的Co-N-C催化剂进行激活,发现激活后的催化性能大幅提升,甚至超过了新制的Co-N-C催化剂.通过对比电激活前后的XPS O 1s谱[图7(c)、(d)]可以看出,久置的Co-N-C催化剂其羰基[C=O,O1,(531.2±0.2) eV]含量大大提升,而电激活后催化剂性能随环氧基/羟基[O2,(532.3±0.2) eV]含量的提升而提升.通过与H2O2氧化处理与热碱处理的结果对比,作者推测环氧基对Co-N-C催化性能的提升发挥着重要作用. ...
... [34]; (c) Linear sweep voltammetry (LSV) curves in rotating ring-disk electrode (RRDE) measurements; (d) H2O2 selectivity (%) and the number of electrons (n) derived from RRDE data; (e) thermodynamic relations (volcano) lines for the 2e- (green solid line) and 4e- ORR (black solid line). The DFT calculated ORR onset potential values (circles) are on the left y-axis, while the experimental current densities (crosses and triangles), reported as ln(|j|), are on the right y-axis [45]Fig. 6
在提升Co-N-C类催化剂的性能方面,目前普遍认同的方法是引入含氧官能团.2019年,Li等[67]用硝酸氧化热解后的钴卟啉,将含氧官能团引入Co-N-C催化剂.测试结果显示,催化剂催化H2O2的产率和法拉第效率分别达813 mg/(L·h)和64.1%.这说明引入含氧官能团能够进一步提升Co-N-C的催化性能.对于该现象产生的原因以及发挥作用的含氧官能团类型,Minhee等[46]从几何效应出发给出了自己的观点.作者认为,M-N-C(尤其是Fe-N-C)存在包括本体M,掺杂物种N以及活性构型M-Nx-Cy在内的多种活性位点,而由于多种活性位点分布的不均一性,导致多个催化位点串联催化,使得“末端”吸附的氧气的另一端被毗邻的催化位点吸引而转变为“侧向”吸附,致使过渡金属氮碳类材料的选择性有所下降[图7(a)].而引入含氧官能团就是预先占据部分活性位点以减少这种现象的发生.之后,Euiyeon等[43]从电子效应出发,通过DFT理论计算,给出了含氧官能团提高Co-N-C催化性能的可能原因.作者发现改变Co-N4附近连接的官能团可以调节其对氧气的吸附能[△G(*OOH)],富电子物质(如O等)的引入,可以提高△G(*OOH);反之缺电子物质(如H)则会导致△G(*OOH)下降[图7(b)].而含氧官能团能与Co-N-C协同催化,正是因为氧的引入使Co-N4对氧气的吸附能△G(*OOH)更逼近火山顶部的最佳值.基于此,作者在NH3氛围下通过煅烧将Co原子引入GO,合成的Co-N-C(O)催化剂H2O2的产率高达(418±19)mmol/(gcat·h),且110 h后依旧可以保持98.7%的活性.不过,上述两篇文献更多的是从氧原子的角度出发解释了含氧官能团能提升Co-N-C催化性能的原因,对于发挥作用的含氧官能团类型并没有展开介绍.Zhang等[67]通过电化学处理对久置的Co-N-C催化剂进行激活,发现激活后的催化性能大幅提升,甚至超过了新制的Co-N-C催化剂.通过对比电激活前后的XPS O 1s谱[图7(c)、(d)]可以看出,久置的Co-N-C催化剂其羰基[C=O,O1,(531.2±0.2) eV]含量大大提升,而电激活后催化剂性能随环氧基/羟基[O2,(532.3±0.2) eV]含量的提升而提升.通过与H2O2氧化处理与热碱处理的结果对比,作者推测环氧基对Co-N-C催化性能的提升发挥着重要作用. ...
The relationship between the selectivity of H2O2 current (a) and (b) and the oxygen content of O-CNT [41]; FTIR spectrum (c) and XPS O1s spectrum (d) of rGO-KBH4 and rGO-KOH [60]Fig. 42.1.3 多原子掺杂
... Performance of some carbon-based catalysts for electrosynthesis of H2O2Table 1
修饰方法
催化剂
电解液
U(vs. RHE)/V
速率/[mmol/(gcat·h)]
选择性/%
参考文献
非金属掺杂
NCMK3IL50
0.1 mol/L KOH
0.1
561.7
70(FE)
[57]
G-COF-950
0.1 mol/L KOH
0.1
1286.9
69.8(FE)
[58]
N-FLG-8
0.1 mol/L KOH
1.8①
9660
>95
[59]
O-CNT
0.6
111.7
约90
[41]
rGO-KOH
0.1 mol/L KOH
0.42~0.74
约100
[60]
FPC-800
0.05 mol/L H2SO4
约0.2
714.1
82.1
[61]
NF-Cs
0.1 mol/L KOH
0.63
92.2
[62]
0.5 mol/L H2SO4
0.35
93.1
NCA-850
0.1 mol/L KOH
0.3~0.5
约100
[63]
DGLC
0.1 mol/L KOH
0.1
355.0
100(FE)
[64]
构建过渡金属氮碳结构
Co SA/CC
0.5 mol/L H2SO4
1.6①
676
[44]
Co-NG(O)
0.1 mol/L KOH
—
418(±19)
[43]
Co-POC-O
0.1 mol/L KOH
0.7
84.3
[65]
Co-NC
0.1 mol/L HClO4
0.4
275
>85(FE)
[66]
EA-CoN@CNTs
0.1 mol/L HClO4
0.65
100
[67]
Fe-CNT
1 mol/L KOH
0.76
1600
95.4(FE)
[68]
注:①表示电池电压;FE表示法拉第效率. ...
... 在提升Co-N-C类催化剂的性能方面,目前普遍认同的方法是引入含氧官能团.2019年,Li等[67]用硝酸氧化热解后的钴卟啉,将含氧官能团引入Co-N-C催化剂.测试结果显示,催化剂催化H2O2的产率和法拉第效率分别达813 mg/(L·h)和64.1%.这说明引入含氧官能团能够进一步提升Co-N-C的催化性能.对于该现象产生的原因以及发挥作用的含氧官能团类型,Minhee等[46]从几何效应出发给出了自己的观点.作者认为,M-N-C(尤其是Fe-N-C)存在包括本体M,掺杂物种N以及活性构型M-Nx-Cy在内的多种活性位点,而由于多种活性位点分布的不均一性,导致多个催化位点串联催化,使得“末端”吸附的氧气的另一端被毗邻的催化位点吸引而转变为“侧向”吸附,致使过渡金属氮碳类材料的选择性有所下降[图7(a)].而引入含氧官能团就是预先占据部分活性位点以减少这种现象的发生.之后,Euiyeon等[43]从电子效应出发,通过DFT理论计算,给出了含氧官能团提高Co-N-C催化性能的可能原因.作者发现改变Co-N4附近连接的官能团可以调节其对氧气的吸附能[△G(*OOH)],富电子物质(如O等)的引入,可以提高△G(*OOH);反之缺电子物质(如H)则会导致△G(*OOH)下降[图7(b)].而含氧官能团能与Co-N-C协同催化,正是因为氧的引入使Co-N4对氧气的吸附能△G(*OOH)更逼近火山顶部的最佳值.基于此,作者在NH3氛围下通过煅烧将Co原子引入GO,合成的Co-N-C(O)催化剂H2O2的产率高达(418±19)mmol/(gcat·h),且110 h后依旧可以保持98.7%的活性.不过,上述两篇文献更多的是从氧原子的角度出发解释了含氧官能团能提升Co-N-C催化性能的原因,对于发挥作用的含氧官能团类型并没有展开介绍.Zhang等[67]通过电化学处理对久置的Co-N-C催化剂进行激活,发现激活后的催化性能大幅提升,甚至超过了新制的Co-N-C催化剂.通过对比电激活前后的XPS O 1s谱[图7(c)、(d)]可以看出,久置的Co-N-C催化剂其羰基[C=O,O1,(531.2±0.2) eV]含量大大提升,而电激活后催化剂性能随环氧基/羟基[O2,(532.3±0.2) eV]含量的提升而提升.通过与H2O2氧化处理与热碱处理的结果对比,作者推测环氧基对Co-N-C催化性能的提升发挥着重要作用. ...
... [43];(c) 老化后CoN@CNTs的XPS O 1s光谱;(d) CoN@CNTs的XPS O 1s光谱[67];(e) 通过2e-(红色)或4e-(黑色)路径计算不同构型SACs的ORR活火山图;(f) *OOH吸附能与活性位(O邻C原子)电荷态的相关性[88](a) simulated Me-N-C catalyst before and after oxidation changes in catalytic sites and oxygen adsorption [46]; (b) calculated catalytic activity volcanoes for the production of H2O (blue) and H2O2 (red) via the ORR (bottom panel) [43]; XPS O 1s spectra of (c) aged CoN@CNTs (d) EA-CoN@CNTs [67]; (e) computed activity volcano plots of ORR via the 2e- (red color) or 4e- (black) pathway for SACs with varied configurations; (f) correlation between the *OOH adsorption energies and charge state of the active site (O-adjacent C atom) [88]Fig. 7
... [43]; XPS O 1s spectra of (c) aged CoN@CNTs (d) EA-CoN@CNTs [67]; (e) computed activity volcano plots of ORR via the 2e- (red color) or 4e- (black) pathway for SACs with varied configurations; (f) correlation between the *OOH adsorption energies and charge state of the active site (O-adjacent C atom) [88]Fig. 7
... [44](a) chemical structure of Co-TPP and computed lowest energy conformational models of Co-PB-1(6) and Co-rPB-1(6); (b) the corresponding H2O2 Faradaic efficiencies for each catalyst [89]; (c) schematic illustration showing the preparation of hierarchical, free‐standing single-Co-atom electrode; (d) Nyquist plots of Co SA/CC and Co-P/CC, Inset shows the equivalent circuit [44]Fig. 83 总结与展望
... [45](a) schematic illustration of all the metal atoms and considered SACs; (b) variations of ΔG(*O) and ΔG(*OOH) on the 31 studied SACs [34]; (c) Linear sweep voltammetry (LSV) curves in rotating ring-disk electrode (RRDE) measurements; (d) H2O2 selectivity (%) and the number of electrons (n) derived from RRDE data; (e) thermodynamic relations (volcano) lines for the 2e- (green solid line) and 4e- ORR (black solid line). The DFT calculated ORR onset potential values (circles) are on the left y-axis, while the experimental current densities (crosses and triangles), reported as ln(|j|), are on the right y-axis [45]Fig. 6
在提升Co-N-C类催化剂的性能方面,目前普遍认同的方法是引入含氧官能团.2019年,Li等[67]用硝酸氧化热解后的钴卟啉,将含氧官能团引入Co-N-C催化剂.测试结果显示,催化剂催化H2O2的产率和法拉第效率分别达813 mg/(L·h)和64.1%.这说明引入含氧官能团能够进一步提升Co-N-C的催化性能.对于该现象产生的原因以及发挥作用的含氧官能团类型,Minhee等[46]从几何效应出发给出了自己的观点.作者认为,M-N-C(尤其是Fe-N-C)存在包括本体M,掺杂物种N以及活性构型M-Nx-Cy在内的多种活性位点,而由于多种活性位点分布的不均一性,导致多个催化位点串联催化,使得“末端”吸附的氧气的另一端被毗邻的催化位点吸引而转变为“侧向”吸附,致使过渡金属氮碳类材料的选择性有所下降[图7(a)].而引入含氧官能团就是预先占据部分活性位点以减少这种现象的发生.之后,Euiyeon等[43]从电子效应出发,通过DFT理论计算,给出了含氧官能团提高Co-N-C催化性能的可能原因.作者发现改变Co-N4附近连接的官能团可以调节其对氧气的吸附能[△G(*OOH)],富电子物质(如O等)的引入,可以提高△G(*OOH);反之缺电子物质(如H)则会导致△G(*OOH)下降[图7(b)].而含氧官能团能与Co-N-C协同催化,正是因为氧的引入使Co-N4对氧气的吸附能△G(*OOH)更逼近火山顶部的最佳值.基于此,作者在NH3氛围下通过煅烧将Co原子引入GO,合成的Co-N-C(O)催化剂H2O2的产率高达(418±19)mmol/(gcat·h),且110 h后依旧可以保持98.7%的活性.不过,上述两篇文献更多的是从氧原子的角度出发解释了含氧官能团能提升Co-N-C催化性能的原因,对于发挥作用的含氧官能团类型并没有展开介绍.Zhang等[67]通过电化学处理对久置的Co-N-C催化剂进行激活,发现激活后的催化性能大幅提升,甚至超过了新制的Co-N-C催化剂.通过对比电激活前后的XPS O 1s谱[图7(c)、(d)]可以看出,久置的Co-N-C催化剂其羰基[C=O,O1,(531.2±0.2) eV]含量大大提升,而电激活后催化剂性能随环氧基/羟基[O2,(532.3±0.2) eV]含量的提升而提升.通过与H2O2氧化处理与热碱处理的结果对比,作者推测环氧基对Co-N-C催化性能的提升发挥着重要作用. ...
... [45]Fig. 6
在提升Co-N-C类催化剂的性能方面,目前普遍认同的方法是引入含氧官能团.2019年,Li等[67]用硝酸氧化热解后的钴卟啉,将含氧官能团引入Co-N-C催化剂.测试结果显示,催化剂催化H2O2的产率和法拉第效率分别达813 mg/(L·h)和64.1%.这说明引入含氧官能团能够进一步提升Co-N-C的催化性能.对于该现象产生的原因以及发挥作用的含氧官能团类型,Minhee等[46]从几何效应出发给出了自己的观点.作者认为,M-N-C(尤其是Fe-N-C)存在包括本体M,掺杂物种N以及活性构型M-Nx-Cy在内的多种活性位点,而由于多种活性位点分布的不均一性,导致多个催化位点串联催化,使得“末端”吸附的氧气的另一端被毗邻的催化位点吸引而转变为“侧向”吸附,致使过渡金属氮碳类材料的选择性有所下降[图7(a)].而引入含氧官能团就是预先占据部分活性位点以减少这种现象的发生.之后,Euiyeon等[43]从电子效应出发,通过DFT理论计算,给出了含氧官能团提高Co-N-C催化性能的可能原因.作者发现改变Co-N4附近连接的官能团可以调节其对氧气的吸附能[△G(*OOH)],富电子物质(如O等)的引入,可以提高△G(*OOH);反之缺电子物质(如H)则会导致△G(*OOH)下降[图7(b)].而含氧官能团能与Co-N-C协同催化,正是因为氧的引入使Co-N4对氧气的吸附能△G(*OOH)更逼近火山顶部的最佳值.基于此,作者在NH3氛围下通过煅烧将Co原子引入GO,合成的Co-N-C(O)催化剂H2O2的产率高达(418±19)mmol/(gcat·h),且110 h后依旧可以保持98.7%的活性.不过,上述两篇文献更多的是从氧原子的角度出发解释了含氧官能团能提升Co-N-C催化性能的原因,对于发挥作用的含氧官能团类型并没有展开介绍.Zhang等[67]通过电化学处理对久置的Co-N-C催化剂进行激活,发现激活后的催化性能大幅提升,甚至超过了新制的Co-N-C催化剂.通过对比电激活前后的XPS O 1s谱[图7(c)、(d)]可以看出,久置的Co-N-C催化剂其羰基[C=O,O1,(531.2±0.2) eV]含量大大提升,而电激活后催化剂性能随环氧基/羟基[O2,(532.3±0.2) eV]含量的提升而提升.通过与H2O2氧化处理与热碱处理的结果对比,作者推测环氧基对Co-N-C催化性能的提升发挥着重要作用. ...
... 在提升Co-N-C类催化剂的性能方面,目前普遍认同的方法是引入含氧官能团.2019年,Li等[67]用硝酸氧化热解后的钴卟啉,将含氧官能团引入Co-N-C催化剂.测试结果显示,催化剂催化H2O2的产率和法拉第效率分别达813 mg/(L·h)和64.1%.这说明引入含氧官能团能够进一步提升Co-N-C的催化性能.对于该现象产生的原因以及发挥作用的含氧官能团类型,Minhee等[46]从几何效应出发给出了自己的观点.作者认为,M-N-C(尤其是Fe-N-C)存在包括本体M,掺杂物种N以及活性构型M-Nx-Cy在内的多种活性位点,而由于多种活性位点分布的不均一性,导致多个催化位点串联催化,使得“末端”吸附的氧气的另一端被毗邻的催化位点吸引而转变为“侧向”吸附,致使过渡金属氮碳类材料的选择性有所下降[图7(a)].而引入含氧官能团就是预先占据部分活性位点以减少这种现象的发生.之后,Euiyeon等[43]从电子效应出发,通过DFT理论计算,给出了含氧官能团提高Co-N-C催化性能的可能原因.作者发现改变Co-N4附近连接的官能团可以调节其对氧气的吸附能[△G(*OOH)],富电子物质(如O等)的引入,可以提高△G(*OOH);反之缺电子物质(如H)则会导致△G(*OOH)下降[图7(b)].而含氧官能团能与Co-N-C协同催化,正是因为氧的引入使Co-N4对氧气的吸附能△G(*OOH)更逼近火山顶部的最佳值.基于此,作者在NH3氛围下通过煅烧将Co原子引入GO,合成的Co-N-C(O)催化剂H2O2的产率高达(418±19)mmol/(gcat·h),且110 h后依旧可以保持98.7%的活性.不过,上述两篇文献更多的是从氧原子的角度出发解释了含氧官能团能提升Co-N-C催化性能的原因,对于发挥作用的含氧官能团类型并没有展开介绍.Zhang等[67]通过电化学处理对久置的Co-N-C催化剂进行激活,发现激活后的催化性能大幅提升,甚至超过了新制的Co-N-C催化剂.通过对比电激活前后的XPS O 1s谱[图7(c)、(d)]可以看出,久置的Co-N-C催化剂其羰基[C=O,O1,(531.2±0.2) eV]含量大大提升,而电激活后催化剂性能随环氧基/羟基[O2,(532.3±0.2) eV]含量的提升而提升.通过与H2O2氧化处理与热碱处理的结果对比,作者推测环氧基对Co-N-C催化性能的提升发挥着重要作用. ...
... [46];(b) 通过ORR产生H2O(蓝色)和H2O2(红色)计算出的催化活性火山[43];(c) 老化后CoN@CNTs的XPS O 1s光谱;(d) CoN@CNTs的XPS O 1s光谱[67];(e) 通过2e-(红色)或4e-(黑色)路径计算不同构型SACs的ORR活火山图;(f) *OOH吸附能与活性位(O邻C原子)电荷态的相关性[88](a) simulated Me-N-C catalyst before and after oxidation changes in catalytic sites and oxygen adsorption [46]; (b) calculated catalytic activity volcanoes for the production of H2O (blue) and H2O2 (red) via the ORR (bottom panel) [43]; XPS O 1s spectra of (c) aged CoN@CNTs (d) EA-CoN@CNTs [67]; (e) computed activity volcano plots of ORR via the 2e- (red color) or 4e- (black) pathway for SACs with varied configurations; (f) correlation between the *OOH adsorption energies and charge state of the active site (O-adjacent C atom) [88]Fig. 7
... [46]; (b) calculated catalytic activity volcanoes for the production of H2O (blue) and H2O2 (red) via the ORR (bottom panel) [43]; XPS O 1s spectra of (c) aged CoN@CNTs (d) EA-CoN@CNTs [67]; (e) computed activity volcano plots of ORR via the 2e- (red color) or 4e- (black) pathway for SACs with varied configurations; (f) correlation between the *OOH adsorption energies and charge state of the active site (O-adjacent C atom) [88]Fig. 7
(a) bonding type of N incorporated into graphite; (b) proportion and content of N bonding types in G-COF after being treated at different temperature; (c) proposed mechanism of electrochemical 2e- ORR on N-doped carbon catalysts [58]; (d) XANES spectrum of N-FLG series catalyst [59]Fig. 3
(a) bonding type of N incorporated into graphite; (b) proportion and content of N bonding types in G-COF after being treated at different temperature; (c) proposed mechanism of electrochemical 2e- ORR on N-doped carbon catalysts [58]; (d) XANES spectrum of N-FLG series catalyst [59]Fig. 3
... [60]The relationship between the selectivity of H2O2 current (a) and (b) and the oxygen content of O-CNT [41]; FTIR spectrum (c) and XPS O1s spectrum (d) of rGO-KBH4 and rGO-KOH [60]Fig. 42.1.3 多原子掺杂
... [62];(d) B、N共掺杂样品中的ORR反应示意图;(e) N-C,BN-C1,BN-C2催化剂的H2O2选择性与电势关系;(f) BN-C1在恒定电势下的稳定性[87](a) SEM, TEM and HRTEM images of N, F-codoped carbon nanocage; (b) number of transferred electrons and H2O2 selectivity of NF-Cs, F-Cs, and N-Cs catalysts; (c) FE of H2O2 produced of electrolysis at different fixed potentials using a NF-Cs electrode [62]; (d) Illustration of ORR reactions of B,N co-doped samples; (e) N-C, BN-C1, and BN-C2 catalyst: H2O2 selectivity at the applied potentials; (f) stability of BN-C1 sample [87]Fig. 5
... [62]; (d) Illustration of ORR reactions of B,N co-doped samples; (e) N-C, BN-C1, and BN-C2 catalyst: H2O2 selectivity at the applied potentials; (f) stability of BN-C1 sample [87]Fig. 5
... Performance of some carbon-based catalysts for electrosynthesis of H2O2Table 1
修饰方法
催化剂
电解液
U(vs. RHE)/V
速率/[mmol/(gcat·h)]
选择性/%
参考文献
非金属掺杂
NCMK3IL50
0.1 mol/L KOH
0.1
561.7
70(FE)
[57]
G-COF-950
0.1 mol/L KOH
0.1
1286.9
69.8(FE)
[58]
N-FLG-8
0.1 mol/L KOH
1.8①
9660
>95
[59]
O-CNT
0.6
111.7
约90
[41]
rGO-KOH
0.1 mol/L KOH
0.42~0.74
约100
[60]
FPC-800
0.05 mol/L H2SO4
约0.2
714.1
82.1
[61]
NF-Cs
0.1 mol/L KOH
0.63
92.2
[62]
0.5 mol/L H2SO4
0.35
93.1
NCA-850
0.1 mol/L KOH
0.3~0.5
约100
[63]
DGLC
0.1 mol/L KOH
0.1
355.0
100(FE)
[64]
构建过渡金属氮碳结构
Co SA/CC
0.5 mol/L H2SO4
1.6①
676
[44]
Co-NG(O)
0.1 mol/L KOH
—
418(±19)
[43]
Co-POC-O
0.1 mol/L KOH
0.7
84.3
[65]
Co-NC
0.1 mol/L HClO4
0.4
275
>85(FE)
[66]
EA-CoN@CNTs
0.1 mol/L HClO4
0.65
100
[67]
Fe-CNT
1 mol/L KOH
0.76
1600
95.4(FE)
[68]
注:①表示电池电压;FE表示法拉第效率. ...
1
... Performance of some carbon-based catalysts for electrosynthesis of H2O2Table 1
修饰方法
催化剂
电解液
U(vs. RHE)/V
速率/[mmol/(gcat·h)]
选择性/%
参考文献
非金属掺杂
NCMK3IL50
0.1 mol/L KOH
0.1
561.7
70(FE)
[57]
G-COF-950
0.1 mol/L KOH
0.1
1286.9
69.8(FE)
[58]
N-FLG-8
0.1 mol/L KOH
1.8①
9660
>95
[59]
O-CNT
0.6
111.7
约90
[41]
rGO-KOH
0.1 mol/L KOH
0.42~0.74
约100
[60]
FPC-800
0.05 mol/L H2SO4
约0.2
714.1
82.1
[61]
NF-Cs
0.1 mol/L KOH
0.63
92.2
[62]
0.5 mol/L H2SO4
0.35
93.1
NCA-850
0.1 mol/L KOH
0.3~0.5
约100
[63]
DGLC
0.1 mol/L KOH
0.1
355.0
100(FE)
[64]
构建过渡金属氮碳结构
Co SA/CC
0.5 mol/L H2SO4
1.6①
676
[44]
Co-NG(O)
0.1 mol/L KOH
—
418(±19)
[43]
Co-POC-O
0.1 mol/L KOH
0.7
84.3
[65]
Co-NC
0.1 mol/L HClO4
0.4
275
>85(FE)
[66]
EA-CoN@CNTs
0.1 mol/L HClO4
0.65
100
[67]
Fe-CNT
1 mol/L KOH
0.76
1600
95.4(FE)
[68]
注:①表示电池电压;FE表示法拉第效率. ...
1
... Performance of some carbon-based catalysts for electrosynthesis of H2O2Table 1
修饰方法
催化剂
电解液
U(vs. RHE)/V
速率/[mmol/(gcat·h)]
选择性/%
参考文献
非金属掺杂
NCMK3IL50
0.1 mol/L KOH
0.1
561.7
70(FE)
[57]
G-COF-950
0.1 mol/L KOH
0.1
1286.9
69.8(FE)
[58]
N-FLG-8
0.1 mol/L KOH
1.8①
9660
>95
[59]
O-CNT
0.6
111.7
约90
[41]
rGO-KOH
0.1 mol/L KOH
0.42~0.74
约100
[60]
FPC-800
0.05 mol/L H2SO4
约0.2
714.1
82.1
[61]
NF-Cs
0.1 mol/L KOH
0.63
92.2
[62]
0.5 mol/L H2SO4
0.35
93.1
NCA-850
0.1 mol/L KOH
0.3~0.5
约100
[63]
DGLC
0.1 mol/L KOH
0.1
355.0
100(FE)
[64]
构建过渡金属氮碳结构
Co SA/CC
0.5 mol/L H2SO4
1.6①
676
[44]
Co-NG(O)
0.1 mol/L KOH
—
418(±19)
[43]
Co-POC-O
0.1 mol/L KOH
0.7
84.3
[65]
Co-NC
0.1 mol/L HClO4
0.4
275
>85(FE)
[66]
EA-CoN@CNTs
0.1 mol/L HClO4
0.65
100
[67]
Fe-CNT
1 mol/L KOH
0.76
1600
95.4(FE)
[68]
注:①表示电池电压;FE表示法拉第效率. ...
5
... Performance of some carbon-based catalysts for electrosynthesis of H2O2Table 1
修饰方法
催化剂
电解液
U(vs. RHE)/V
速率/[mmol/(gcat·h)]
选择性/%
参考文献
非金属掺杂
NCMK3IL50
0.1 mol/L KOH
0.1
561.7
70(FE)
[57]
G-COF-950
0.1 mol/L KOH
0.1
1286.9
69.8(FE)
[58]
N-FLG-8
0.1 mol/L KOH
1.8①
9660
>95
[59]
O-CNT
0.6
111.7
约90
[41]
rGO-KOH
0.1 mol/L KOH
0.42~0.74
约100
[60]
FPC-800
0.05 mol/L H2SO4
约0.2
714.1
82.1
[61]
NF-Cs
0.1 mol/L KOH
0.63
92.2
[62]
0.5 mol/L H2SO4
0.35
93.1
NCA-850
0.1 mol/L KOH
0.3~0.5
约100
[63]
DGLC
0.1 mol/L KOH
0.1
355.0
100(FE)
[64]
构建过渡金属氮碳结构
Co SA/CC
0.5 mol/L H2SO4
1.6①
676
[44]
Co-NG(O)
0.1 mol/L KOH
—
418(±19)
[43]
Co-POC-O
0.1 mol/L KOH
0.7
84.3
[65]
Co-NC
0.1 mol/L HClO4
0.4
275
>85(FE)
[66]
EA-CoN@CNTs
0.1 mol/L HClO4
0.65
100
[67]
Fe-CNT
1 mol/L KOH
0.76
1600
95.4(FE)
[68]
注:①表示电池电压;FE表示法拉第效率. ...
... 在提升Co-N-C类催化剂的性能方面,目前普遍认同的方法是引入含氧官能团.2019年,Li等[67]用硝酸氧化热解后的钴卟啉,将含氧官能团引入Co-N-C催化剂.测试结果显示,催化剂催化H2O2的产率和法拉第效率分别达813 mg/(L·h)和64.1%.这说明引入含氧官能团能够进一步提升Co-N-C的催化性能.对于该现象产生的原因以及发挥作用的含氧官能团类型,Minhee等[46]从几何效应出发给出了自己的观点.作者认为,M-N-C(尤其是Fe-N-C)存在包括本体M,掺杂物种N以及活性构型M-Nx-Cy在内的多种活性位点,而由于多种活性位点分布的不均一性,导致多个催化位点串联催化,使得“末端”吸附的氧气的另一端被毗邻的催化位点吸引而转变为“侧向”吸附,致使过渡金属氮碳类材料的选择性有所下降[图7(a)].而引入含氧官能团就是预先占据部分活性位点以减少这种现象的发生.之后,Euiyeon等[43]从电子效应出发,通过DFT理论计算,给出了含氧官能团提高Co-N-C催化性能的可能原因.作者发现改变Co-N4附近连接的官能团可以调节其对氧气的吸附能[△G(*OOH)],富电子物质(如O等)的引入,可以提高△G(*OOH);反之缺电子物质(如H)则会导致△G(*OOH)下降[图7(b)].而含氧官能团能与Co-N-C协同催化,正是因为氧的引入使Co-N4对氧气的吸附能△G(*OOH)更逼近火山顶部的最佳值.基于此,作者在NH3氛围下通过煅烧将Co原子引入GO,合成的Co-N-C(O)催化剂H2O2的产率高达(418±19)mmol/(gcat·h),且110 h后依旧可以保持98.7%的活性.不过,上述两篇文献更多的是从氧原子的角度出发解释了含氧官能团能提升Co-N-C催化性能的原因,对于发挥作用的含氧官能团类型并没有展开介绍.Zhang等[67]通过电化学处理对久置的Co-N-C催化剂进行激活,发现激活后的催化性能大幅提升,甚至超过了新制的Co-N-C催化剂.通过对比电激活前后的XPS O 1s谱[图7(c)、(d)]可以看出,久置的Co-N-C催化剂其羰基[C=O,O1,(531.2±0.2) eV]含量大大提升,而电激活后催化剂性能随环氧基/羟基[O2,(532.3±0.2) eV]含量的提升而提升.通过与H2O2氧化处理与热碱处理的结果对比,作者推测环氧基对Co-N-C催化性能的提升发挥着重要作用. ...
... [67]通过电化学处理对久置的Co-N-C催化剂进行激活,发现激活后的催化性能大幅提升,甚至超过了新制的Co-N-C催化剂.通过对比电激活前后的XPS O 1s谱[图7(c)、(d)]可以看出,久置的Co-N-C催化剂其羰基[C=O,O1,(531.2±0.2) eV]含量大大提升,而电激活后催化剂性能随环氧基/羟基[O2,(532.3±0.2) eV]含量的提升而提升.通过与H2O2氧化处理与热碱处理的结果对比,作者推测环氧基对Co-N-C催化性能的提升发挥着重要作用. ...
... [67];(e) 通过2e-(红色)或4e-(黑色)路径计算不同构型SACs的ORR活火山图;(f) *OOH吸附能与活性位(O邻C原子)电荷态的相关性[88](a) simulated Me-N-C catalyst before and after oxidation changes in catalytic sites and oxygen adsorption [46]; (b) calculated catalytic activity volcanoes for the production of H2O (blue) and H2O2 (red) via the ORR (bottom panel) [43]; XPS O 1s spectra of (c) aged CoN@CNTs (d) EA-CoN@CNTs [67]; (e) computed activity volcano plots of ORR via the 2e- (red color) or 4e- (black) pathway for SACs with varied configurations; (f) correlation between the *OOH adsorption energies and charge state of the active site (O-adjacent C atom) [88]Fig. 7
... [67]; (e) computed activity volcano plots of ORR via the 2e- (red color) or 4e- (black) pathway for SACs with varied configurations; (f) correlation between the *OOH adsorption energies and charge state of the active site (O-adjacent C atom) [88]Fig. 7
(a) SEM, TEM and HRTEM images of N, F-codoped carbon nanocage; (b) number of transferred electrons and H2O2 selectivity of NF-Cs, F-Cs, and N-Cs catalysts; (c) FE of H2O2 produced of electrolysis at different fixed potentials using a NF-Cs electrode [62]; (d) Illustration of ORR reactions of B,N co-doped samples; (e) N-C, BN-C1, and BN-C2 catalyst: H2O2 selectivity at the applied potentials; (f) stability of BN-C1 sample [87]Fig. 5
... 在提升Co-N-C类催化剂的性能方面,目前普遍认同的方法是引入含氧官能团.2019年,Li等[67]用硝酸氧化热解后的钴卟啉,将含氧官能团引入Co-N-C催化剂.测试结果显示,催化剂催化H2O2的产率和法拉第效率分别达813 mg/(L·h)和64.1%.这说明引入含氧官能团能够进一步提升Co-N-C的催化性能.对于该现象产生的原因以及发挥作用的含氧官能团类型,Minhee等[46]从几何效应出发给出了自己的观点.作者认为,M-N-C(尤其是Fe-N-C)存在包括本体M,掺杂物种N以及活性构型M-Nx-Cy在内的多种活性位点,而由于多种活性位点分布的不均一性,导致多个催化位点串联催化,使得“末端”吸附的氧气的另一端被毗邻的催化位点吸引而转变为“侧向”吸附,致使过渡金属氮碳类材料的选择性有所下降[图7(a)].而引入含氧官能团就是预先占据部分活性位点以减少这种现象的发生.之后,Euiyeon等[43]从电子效应出发,通过DFT理论计算,给出了含氧官能团提高Co-N-C催化性能的可能原因.作者发现改变Co-N4附近连接的官能团可以调节其对氧气的吸附能[△G(*OOH)],富电子物质(如O等)的引入,可以提高△G(*OOH);反之缺电子物质(如H)则会导致△G(*OOH)下降[图7(b)].而含氧官能团能与Co-N-C协同催化,正是因为氧的引入使Co-N4对氧气的吸附能△G(*OOH)更逼近火山顶部的最佳值.基于此,作者在NH3氛围下通过煅烧将Co原子引入GO,合成的Co-N-C(O)催化剂H2O2的产率高达(418±19)mmol/(gcat·h),且110 h后依旧可以保持98.7%的活性.不过,上述两篇文献更多的是从氧原子的角度出发解释了含氧官能团能提升Co-N-C催化性能的原因,对于发挥作用的含氧官能团类型并没有展开介绍.Zhang等[67]通过电化学处理对久置的Co-N-C催化剂进行激活,发现激活后的催化性能大幅提升,甚至超过了新制的Co-N-C催化剂.通过对比电激活前后的XPS O 1s谱[图7(c)、(d)]可以看出,久置的Co-N-C催化剂其羰基[C=O,O1,(531.2±0.2) eV]含量大大提升,而电激活后催化剂性能随环氧基/羟基[O2,(532.3±0.2) eV]含量的提升而提升.通过与H2O2氧化处理与热碱处理的结果对比,作者推测环氧基对Co-N-C催化性能的提升发挥着重要作用.
(a) 模拟的M-N-C催化剂氧化前后催化位点和氧气吸附变化[46];(b) 通过ORR产生H2O(蓝色)和H2O2(红色)计算出的催化活性火山[43];(c) 老化后CoN@CNTs的XPS O 1s光谱;(d) CoN@CNTs的XPS O 1s光谱[67];(e) 通过2e-(红色)或4e-(黑色)路径计算不同构型SACs的ORR活火山图;(f) *OOH吸附能与活性位(O邻C原子)电荷态的相关性[88]
(a) simulated Me-N-C catalyst before and after oxidation changes in catalytic sites and oxygen adsorption [46]; (b) calculated catalytic activity volcanoes for the production of H2O (blue) and H2O2 (red) via the ORR (bottom panel) [43]; XPS O 1s spectra of (c) aged CoN@CNTs (d) EA-CoN@CNTs [67]; (e) computed activity volcano plots of ORR via the 2e- (red color) or 4e- (black) pathway for SACs with varied configurations; (f) correlation between the *OOH adsorption energies and charge state of the active site (O-adjacent C atom) [88]Fig. 7
... [89];(c) 分层独立式Co单原子电极制备示意图;(d) Co SA/CC和Co-P/CC的Nyquist图,插图为等效电路[44](a) chemical structure of Co-TPP and computed lowest energy conformational models of Co-PB-1(6) and Co-rPB-1(6); (b) the corresponding H2O2 Faradaic efficiencies for each catalyst [89]; (c) schematic illustration showing the preparation of hierarchical, free‐standing single-Co-atom electrode; (d) Nyquist plots of Co SA/CC and Co-P/CC, Inset shows the equivalent circuit [44]Fig. 83 总结与展望
... [89]; (c) schematic illustration showing the preparation of hierarchical, free‐standing single-Co-atom electrode; (d) Nyquist plots of Co SA/CC and Co-P/CC, Inset shows the equivalent circuit [44]Fig. 83 总结与展望