储能科学与技术, 2021, 10(6): 1963-1976 doi: 10.19799/j.cnki.2095-4239.2021.0122

氢能与燃料电池专刊

电化学氧还原反应合成H2O2碳基催化剂研究进展

何峰,, 张静静, 陈奕君, 张建,, 王得丽,

华中科技大学化学与化工学院,能量转化与储存材料化学教育部重点实验室,湖北 武汉 430074

Recent progress on carbon-based catalysts for electrochemical synthesis of H2O2 via oxygen reduction reaction

HE Feng,, ZHANG Jingjing, CHEN Yijun, ZHANG Jian,, WANG Deli,

Key Laboratory of Material Chemistry for Energy Conversion and Storage, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China

收稿日期: 2021-03-23   修回日期: 2021-06-07   网络出版日期: 2021-11-03

基金资助: 国家自然科学基金项目.  51802104
煤燃烧国家重点实验室开放基金项目.  FSKLCCA2008

Received: 2021-03-23   Revised: 2021-06-07   Online: 2021-11-03

作者简介 About authors

何峰(2000—),男,本科生,研究方向为电催化与电合成,E-mail:fenghe0109@hust.edu.cn E-mail:fenghe0109@hust.edu.cn

张建,副教授,研究方向为新能源与电催化,E-mail:zhangjian7@hust.edu.cn E-mail:zhangjian7@hust.edu.cn

王得丽,教授,研究方向为新能源与电催化,E-mail:wangdl81125@hust.edu.cn。 E-mail:wangdl81125@hust.edu.cn

摘要

电化学氧还原反应(ORR)合成H2O2是一种低成本、无污染的绿色合成方法。但是,ORR动力学缓慢,存在四电子ORR生成H2O的竞争反应,因此需要使用催化剂提升ORR的反应活性以及二电子ORR的选择性。近年来,碳基材料因价格便宜、来源广泛、调控方法多样,被广泛应用于该领域。本文首先简要介绍了电催化ORR合成H2O2的机理,并根据机理分析了影响电化学合成H2O2催化性能的关键因素。接着阐述了提升碳基ORR催化剂活性与二电子选择性的策略,并着重介绍了非金属原子掺杂碳材料和过渡金属氮碳材料。最后,总结了碳基催化剂在电化学合成H2O2中存在的问题和面临的挑战,对碳基催化剂在电合成H2O2中应用的发展趋势进行了展望。

关键词: 电化学合成 ; 2电子氧还原反应 ; 过氧化氢 ; 掺杂碳材料 ; 过渡金属氮碳催化剂

Abstract

The electrochemical synthesis of H2O2 via oxygen reduction reaction (ORR) is a low-cost, environment-friendly, and green synthesis method. However, the kinetics of ORR is very slow, and is also accompanied by the competitive reaction of 4 electron (4e-) ORR to generate H2O. The catalysts are therefore required. In recent years, carbon-based materials with low prices, abundant resources, competitive activity, and easy adjustability, have received extensive attention in this field. Herein, this review first briefly introduces the mechanism of ORR to the synthesis of H2O2, and the key factors of the catalytic performance of electrochemical synthesis of H2O2. Further, the strategy to improve the ORR activity and selectivity of carbon-based catalysts is reviewed, in which the doping of non-metallic atoms and the construction of transition metal single atoms on carbon-based materials are emphasized. Finally, the existing problems, challenges, and perspectives of carbon-based catalysts toward the electrosynthesis of H2O2 were described.

Keywords: electrochemical synthesis ; 2-electron oxygen reduction reaction ; hydrogen peroxide ; doped carbon materials ; transition metal nitrogen-carbon catalysts

PDF (6316KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

何峰, 张静静, 陈奕君, 张建, 王得丽. 电化学氧还原反应合成H2O2碳基催化剂研究进展[J]. 储能科学与技术, 2021, 10(6): 1963-1976

HE Feng. Recent progress on carbon-based catalysts for electrochemical synthesis of H2O2 via oxygen reduction reaction[J]. Energy Storage Science and Technology, 2021, 10(6): 1963-1976

过氧化氢(H2O2)俗称双氧水,被认为是世界上最重要的100种化学品之一,目前广泛应用于造纸工业、化工合成、污水处理等多个领域[1-2]。同时,由于H2O2水溶液在整个pH范围内都有高氧化电势(pH=0时E0=1.763 V,pH=14时E0=0.878 V)[3],且反应产物(H2O或O2)无毒无污染,所以H2O2也是公认的环境友好型氧化剂[4]。近年来随着环保意识的增强,绿色化学理念受到各界的高度重视,H2O2作为“清洁”化工产品,其应用和需求量将会进一步增加[5]

目前,合成H2O2的主要方法是蒽醌工艺,生产量占总产量的95%以上[6]。该方法的具体过程为,将含有2-乙基蒽醌(EAQ)的工作液先通入氢气氢化,再通入空气氧化,形成的产物经过萃取净化最终得到H2O2溶液[3, 7]。蒽醌工艺虽然实现了大规模生产,但却如图1所示存在着诸多问题,很难被认为是制备H2O2的“绿色”工艺[38-9]。因此,寻找蒽醌工艺的替代技术已经受到了工业界与学术界的重视[10]。目前研究的替代方法有直接合成法[11-13]、光催化法[14-16]和电催化法[17-19]。其中,以清洁的H2O和O2为原料的电化学氧还原法是目前最具吸引力的思路之一[20]。电化学氧还原法是在一定电压下,将通入阴极的O2直接与电解液中的质子结合,实现H2O2的原位生产[4]。通过图1中与蒽醌法对比可以明显看出,电化学合成法很好地克服了蒽醌工艺当前存在的不足,更加符合当今绿色化学的理念[10]

图 1

图 1   蒽醌法与电化学合成法的流程与工艺特点

Fig. 1   The characteristics of anthraquinone and electrochemical synthesis method for the synthesis of H2O2


然而,氧还原反应(ORR)动力学缓慢[21],除了目标2e- ORR途径(O2+2e-+2H+→H2O2)外,还存在着4e- ORR(O2+4e-+4H+→2H2O)竞争反应。因此,寻找兼具较高ORR活性,2电子选择性以及稳定性的优秀催化剂成为了当前研究的热点。其中,贵金属基催化剂,如Pt[22-23]、Pd[24-26]及其合金[27-28]等,具有优异的ORR活性;但价格昂贵、稳定性差、容易中毒等不足极大地限制它们大规模商业化应用[29]。相比贵金属,碳基材料价格便宜、来源广泛、结构易调,近年来被广泛应用于电催化ORR合成H2O2的研究[30-31]。基于此,本文在简单介绍电化学合成H2O2的反应机理后,重点对电化学合成H2O2碳基催化剂的研究现状进行了综述,最后指出了当前碳基催化剂在电化学合成H2O2中存在的问题以及面临的挑战,并对其发展趋势进行了展望。

1 电化学ORR合成H2O2反应机理

电化学ORR实际上是个多步反应,包含若干基元反应以及中间体[32]。目前普遍接受的是Wroblowa等提出的,O2是通过“4e-途径”[式1(a)]和“2e-途径”[式1(b)]被分别还原为H2O和H2O2[4]

O2+4H++4e-2H2O  E0=1.229 V   vs. SHE [式1(a)]
O2+2H++2e-H2O2  E0=0.695 V   vs. SHE [式1(b)]

为保证反应以预期的方式进行,对ORR反应机理的认识就显得尤为重要。在酸性条件下,普遍认为的2e- ORR机理为:溶液中O2通过“末端”吸附与催化剂的表面进行作用;接着吸附的O2得到电子,同时从溶液中获得质子形成中间体*OOH;最后中间体*OOH继续得到一个电子和质子,以H2O2的形式脱附。碱性中的反应机理大致与酸性环境中一致,不同点在于质子是由水分子提供,并且最后H2O2以HO2-的形式脱附[35-36][式2(a)~(c)和图2绿色箭头的2e-途径]。

图 2

图 2   可能的电化学氧气还原反应路径

Fig. 2   The electrocatalytic mechanism of oxygen reduction reaction


O2+2e-+2H+H2O2 [式2(a)]
O2+*+(H++e-)*OOH [式2(b)]
*OOH+(H++e-)H2O2+* [式2]

式中,*表示催化剂的活性位点。

值得注意的是,电化学合成H2O2的过程中存在着4e- ORR的竞争反应。4e- ORR存在缔合与解离两种机理。图2橙色箭头的解离途径是指部分“末端”吸附的氧气,因与催化剂的吸附能较大,导致中间体*OOH中的O―O键被进一步活化而还原为H2O。图2蓝色箭头的4e-途径则是指以“侧向”方式吸附的O2直接得到四个电子而被还原为H2O(或OH-)。

从以上氧气还原的反应机理可以看出,影响电化学合成H2O2催化剂性能的关键因素如下。①氧气在催化剂表面的吸附方式。最利于2e- ORR的吸附方式是“末端”吸附。为此,在设计催化剂时,可以考虑适当增加活性位点间的距离,或者对活性位点进行适当修饰。如Choi等[22]将乙炔黑覆盖在活性位点Pt表面,缩小了活性位点的暴露面积,实现了氧吸附方式的控制,将Pt催化剂的H2O2选择性从约1%提升至41%。这种催化剂空间结构(如活性位点分布、活性中心结构等)变化对催化性能的影响被称为几何效应或空间效应[37]。②中间体*OOH与催化剂的吸附能。根据Sabatier原理,中间体*OOH与催化剂之间的吸附能应当适中,太大或者太小均不利于H2O2的产生。而吸附能的大小很大程度上受活性位点的电子密度影响,所以这种效应被称为电子效应[38]。因此,选择对中间体*OOH有合适吸附能的材料作催化剂也是需要关注的重点[39]。综上可以看出,在实际选择或设计催化材料时,需要同时考虑几何效应和电子效应,以保证催化剂的ORR活性和2e-选择性。

2 碳基催化剂

碳基催化剂被用于电催化合成H2O2最早可追溯到20世纪70年代末,Watkinson等[38]将石墨颗粒作为催化剂,证明了碳材料可以用于催化H2O2的电化学合成。但是纯碳材料在电催化ORR反应中的活性不高,远未达到商业化的要求。对此,研究者们通过对碳基材料进行修饰或者改性,改变碳基材料的电子结构等,使其电催化ORR性能得到提升。目前,修饰碳基材料的方法大致包括非金属原子(N、O、F等)掺杂[39-42]、构建过渡金属氮碳结构[43-46]、构建缺陷[47-49]、引入功能分子[50-53]、与其他活性碳材料复合[54-56]等。表1展示了部分非金属掺杂碳材料和过渡金属碳基单原子催化剂电化学合成H2O2的性能,可以看出它们在电化学合成H2O2方面均表现出了巨大的潜力。因此,本文将重点围绕这两部分进行展开。

表1   部分碳基氧还原催化剂电合成H2O2的性能

Table 1  Performance of some carbon-based catalysts for electrosynthesis of H2O2

修饰方法催化剂电解液U(vs. RHE)/V速率/[mmol/(gcat·h)]选择性/%参考文献
非金属掺杂NCMK3IL500.1 mol/L KOH0.1561.770(FE)[57]
G-COF-9500.1 mol/L KOH0.11286.969.8(FE)[58]
N-FLG-80.1 mol/L KOH1.89660>95[59]
O-CNT0.6111.7约90[41]
rGO-KOH0.1 mol/L KOH0.42~0.74约100[60]
FPC-8000.05 mol/L H2SO4约0.2714.182.1[61]
NF-Cs0.1 mol/L KOH0.6392.2[62]
0.5 mol/L H2SO40.3593.1
NCA-8500.1 mol/L KOH0.3~0.5约100[63]
DGLC0.1 mol/L KOH0.1355.0100(FE)[64]
构建过渡金属氮碳结构Co SA/CC0.5 mol/L H2SO41.6676[44]
Co-NG(O)0.1 mol/L KOH418(±19)[43]
Co-POC-O0.1 mol/L KOH0.784.3[65]
Co-NC0.1 mol/L HClO40.4275>85(FE)[66]
EA-CoN@CNTs0.1 mol/L HClO40.65100[67]
Fe-CNT1 mol/L KOH0.76160095.4(FE)[68]

注:①表示电池电压;FE表示法拉第效率。

新窗口打开| 下载CSV


2.1 非金属掺杂碳材料

非金属掺杂碳材料通常是指用除碳原子之外的其他非金属原子(如N、O、F、S等)取代碳基材料中碳原子得到的催化剂[69]。杂原子的引入可以破坏碳基π体系的完整性和均匀性,引起碳基电子的重新排布,如N、O等具有较大电负性的原子,它们可以极化周围的碳原子,使其带上部分正电荷,成为活性位点,实现ORR催化性能的提升[70]

2.1.1 N原子掺杂

目前,在众多掺杂碳材料中N原子掺杂受到了研究者们的青睐。其中一个原因就是N原子与C原子半径比较接近,可以很好地掺到碳晶格中,形成具有高稳定性与耐久性的N掺杂碳材料。2009年,Gong等[71]Science上发表了N掺杂的定向垂直碳纳米管阵列,该催化剂在碱性环境中展现了出色的ORR活性,且稳定性可媲美于商业Pt/C催化剂。这也掀起了将N掺杂碳纳米材料应用于ORR的研究浪潮。目前研究表明,掺入的N原子主要有四种键合类型,即石墨-N(graphitic-N)、吡啶-N(pyridinic-N)、吡咯-N(pyrrolic-N)和氧化态-N(pyridinic oxide-N)[图3(a)]。不同键合类型的N原子催化活性也有所差异,如Sun等[72]通过大量研究得出,吡啶-N结构在酸性下电催化ORR中起关键作用,而石墨-N在中性和碱性下更加重要。

图 3

图 3   (a) 掺入碳材料中的N的键合类型;(b) G-COF在不同温度处理后不同键合类型N的比例即含量;(c) N掺杂碳催化剂上2e- ORR的可能机理[58](d) N-FLG系列催化剂的XANES光谱[59]

Fig. 3   (a) bonding type of N incorporated into graphite; (b) proportion and content of N bonding types in G-COF after being treated at different temperature; (c) proposed mechanism of electrochemical 2e- ORR on N-doped carbon catalysts [58]; (d) XANES spectrum of N-FLG series catalyst [59]


鉴于不同键合类型N的催化活性存在差异,调节催化剂中不同键合类型N的比例有助于对催化2e- ORR的活性位点进行判断。2020年,Zhang等[58]将共价有机骨架(COF)作为前驱体,通过高温热解合成了催化剂G-COF。利用X射线光电子能谱(XPS),作者发现温度可以影响掺入N的键合类型,随着温度的升高,石墨-N的比例会有所增加,而吡啶-N和吡咯-N的比例则会相对降低[图3(b)]。文中,高温处理(950 ℃)后的G-COF石墨-N含量达1.86%,占N掺入总量的60.7%;该催化剂在0.1 mol/L KOH的溶液中,H2O2的产率和法拉第效率分别达1286.9 mmol/(gcat·h)和69.8%,活性超过目前大多数的碳基材料。基于上述认识,作者提出了可能的催化机理,即吸附在活性位点碳上的氧气在转变为中间体*OOH后,N原子参与共轭的电子可以促使*OOH解吸[图3(c)]。结合其机理,可以认为稠密的石墨-N是使催化活性得以提升的关键。与Zhang等[61]有所不同,Li等[59]通过改变前体材料(三聚氰胺+甘氨酸)的质量比,实现了对吡咯-N含量的调控[图3(d)]。作者发现有大量吡咯-N存在的碳基材料可以有效促进O2以2e- ORR的方式进行,其在阴极H2O2的产率高达9.66 mol/(h·gcat)。通过对比吸附*OOH前后N K-边X射线吸收近边结构(XANES)光谱发现只有吡咯-N发生了负移,即中间体*OOH的吸附导致杂化变形引起。由此可见,在该催化剂中,吡咯-N发挥着至关重要的作用。对于吡啶-N,目前认为其主要是促进4e- ORR过程[76-77]。因为吡啶-N的离域孤对电子会诱导O2中的电荷从π轨道转移到反键轨道,导致O―O键的键级下降,键强减弱,促使中间体*OOH解离为*O和*OH[59, 75]

与采用化工原料作前驱体相比,以生物质作为原料的碳基催化剂由于环境友好、来源广泛、可再生等优势受到人们的关注[77-78]。2017年,Yang等[79]以柚皮为原料,通过一步碳化制备了生物质衍生氮掺杂碳材料催化剂,该催化剂在O2饱和的0.1 mol/L KOH溶液中的H2O2产率达22.0 g/(gcat·h·L),且能耗低至0.076 W·h/g[H2O2]。之后,Liao等[80]以豆渣为原料,通过碳化得到的催化剂的H2O2产率和选择性分别达380 mg/(L·h)和98%。由于生物质原料的低污染性、可再生等特点十分符合绿色化学的理念,利用其制备碳基催化剂存在巨大的研究潜力。

2.1.2 O原子掺杂

大部分碳基材料都不可避免地含有一定的O原子,并且以含氧官能团(如C―O―C,―COOH等)的形式存在于碳基材料中[29]。但是由于含量很少,对催化剂性能的影响十分有限。所以,在研究O原子掺杂对催化剂性能的影响时,还需要将碳材料进一步氧化处理。早期,Miao等[81]用浓H2SO4氧化石墨毡,得到的催化剂H2O2产率达112.5 mg/(L·h),说明了O原子掺杂能够提高催化剂的性能。2018年,Lu等[41]用浓硝酸氧化碳纳米管(CNT)得到了氧掺杂的碳纳米管(O-CNT),测试结果显示,在O-CNT的催化下,H2O2浓度在30 min内积累至1975 mg/L,选择性也高达90%,较原CNT有很大的提高。结合之后的对照实验以及密度泛函理论(DFT)计算,作者认为O-CNT高选择性的催化位点是与特定含氧官能团(―COOH和C―O―C)相邻的碳原子。Zhao等[63]在聚合间苯二酚和甲醛的过程中加入乙腈,接着在Na2CO3存在下碳化聚合体,将引入的氰基(―CN)转化为羰基(―COOH),制备了―COOH端基氮掺杂碳气凝胶。结构表征显示,碳化后材料中的―COOH含量是原始材料的8.5倍,说明了―COOH端基成功引入。而该催化剂对H2O2的选择性最高可达100%,且电化学稳定性也很高。进一步地,Qi等[82]通过控制硝酸氧化温度探究了含氧量与H2O2选择性间的关系。实验表明2e- ORR的选择性与特定含氧官能团(―C=O、―COOH)的浓度成正相关,且动力学研究显示―COOH比―C=O的催化活性高五倍。综上所述,―COOH可以被认为在2e- ORR中发挥着至关重要的作用。

同样含有大量含氧官能团的氧化石墨烯(GO),却因其导电性很差,很难直接将应用于电催化反应。幸运的是,部分还原的氧化石墨烯(rGO)兼具了高导电性和富含含氧官能团的特性[60]。因此,在O掺杂研究中,rGO也同样受到了研究者们的广泛关注。2018年,Kim等[83]将GO轻度还原后(mrGO),利用P50碳纸合成了多层mrGO催化剂(F-mrGO),该催化剂的ORR活性、选择性(约100%)以及稳定性均十分出色。Zhu等[60]将氧化石墨烯(GO)分别用KBH4和KOH处理,将得到的两种rGO进行对比。通过傅里叶变换红外光谱(FTIR)和XPS O1s能谱,发现rGO-KBH4表面存在大量的羟基(―OH)而rGO-KOH表面则是以C―O―C为主[图4(c)、(d)]。进一步电化学测试显示,与rGO-KBH4相比,rGO-KOH的电导率和H2O2选择性均更高,这说明含氧官能团C―O―C在H2O2选择性方面起着重要作用。对此,作者推断可能是氧原子参与到了碳原子间的共轭离域,由于氧原子在离域中会提供两个电子,致使碳原子与中间体*OOH吸附能减弱,有利于*OOH的脱附致使催化剂的H2O2选择性增大。

图4

图4   H2O2(a) 电流和(b) 选择性与O-CNT的氧含量的关系[41]rGO-KBH4rGO-KOH(c) FTIR光谱和(d) XPS O1s 光谱[60]

Fig. 4   The relationship between the selectivity of H2O2 current (a) and (b) and the oxygen content of O-CNT [41]; FTIR spectrum (c) and XPS O1s spectrum (d) of rGO-KBH4 and rGO-KOH [60]


2.1.3 多原子掺杂

除了掺入单原子外,利用不同原子之间协同作用的多原子掺杂也是当前研究热点。Chen的课题组[62]以多巴胺为氮源、商用聚偏二氟乙烯(PVDF)纳米球为模板和氟源,得到了N、F原子掺杂的空心碳纳米笼[图5(a)]。该催化剂H2O2的产率最高达92.2%;且在不同电位下(0.2~0.74 V),其法拉第效率均可以保持在约85%[图5(b),(c)]。对此,理论计算发现,N、F的协同作用是该催化剂优异电催化性能的来源:掺杂的N原子使得O2的吸附能较原石墨碳的-0.25 eV降至-0.57 eV左右,从而增强了ORR的催化活性;而掺入的F原子则是促进了*OOH的解吸,使*OOH的吸附能仅为-0.012 eV,实现了高选择性地形成H2O2

图5

图5   (a) NF掺杂碳纳米笼的SEMTEMHRTEM图像;(b) NF-CsF-CsN-Cs催化剂的转移电子数和H2O2选择性;(c) 不同电压下NF-Cs 催化剂的法拉第效率[62](d) BN共掺杂样品中的ORR反应示意图;(e) N-CBN-C1BN-C2催化剂的H2O2选择性与电势关系;(f) BN-C1在恒定电势下的稳定性[87]

Fig. 5   (a) SEM, TEM and HRTEM images of N, F-codoped carbon nanocage; (b) number of transferred electrons and H2O2 selectivity of NF-Cs, F-Cs, and N-Cs catalysts; (c) FE of H2O2 produced of electrolysis at different fixed potentials using a NF-Cs electrode [62]; (d) Illustration of ORR reactions of B,N co-doped samples; (e) N-C, BN-C1, and BN-C2 catalyst: H2O2 selectivity at the applied potentials; (f) stability of BN-C1 sample [87]


N、O原子的共掺杂是多原子掺杂中研究最广泛的。Lee等[39]利用胶原蛋白合成的富含氧官能团的N掺杂多孔碳材料有高达93%的H2O2选择性,且在较宽的电势范围内(0.17~0.60 V)法拉第效率均在80%以上。作者认为,这是由于含氧官能团的存在提高了碳材料的亲水性,有利于H2O2的生成。这之后,含氧官能团的协同作用引起了人们的关注,大量关于N掺杂碳中引入含氧官能团的工作见诸报道[63, 84-85]。Kim等[98-99]对N掺杂rGO进行了研究,并探讨了其催化2e- ORR 的可能机理。出人意料的是,通过对照实验以及理论计算,作者发现该类催化剂中N的含量与反应起始电位并无明显的相关性;相反该催化剂活性的主要来源是氧化物区域旁的sp2碳,并且环氧基和醚基对催化活性的提升效果最佳。也就是说,在N掺杂的rGO中可能含氧官能团的作用会大于N原子。进一步的机理研究表明,不同类型的N-rGO可能存在着不同的ORR机理,这意味着对碳基催化剂催化机理以及ORR选择性来源的研究面临着巨大的挑战。

与上述不同的是,将电负性小的B原子与N原子共掺杂同样实现了催化性能的提升。2018年,Chen等[87]探索了B、N共掺杂的碳材料在催化电化学合成H2O2方面的性能。作者将含B、N的单体先聚合再裂解,实现了B、N共掺杂的多孔碳材料的制备(NF-Cs)[图5(d)]。测试结果显示,在0.1 mol/L KOH溶液中NF-Cs的H2O2选择性最高可达90%,且2000次循环后催化活性基本不变[图5(e)、(f)]。结合DFT计算,作者认为掺入的B、N原子形成了h-BN晶格。有趣的是,h-BN晶格中具有碳的BCN构型表现出强大的氧结合能,这有利于将O2还原为水。而石墨烯基中具有h-BN晶格的BCN构型则是弱的氧结合能,有利于*OOH脱吸附和H2O2形成。这同时也解释了实验中掺入h-BN的含量在13%时催化性能最佳的原因。

2.2 过渡金属氮碳催化剂

H2O2的最佳生产介质是酸性介质,但目前非金属掺杂碳材料在酸中过电位偏高的问题仍有待解决。对此,过渡金属氮碳催化剂受到了人们的广泛关注。Guo等[34]通过计算210种单原子模型[图6(a)]证明了M-N-C具有很好的H2O2催化性能,并从几何效应和电子效应出发给出了催化剂活性与选择性来源。由于单原子的特殊结构,使得*O无法稳定存在而*OOH的吸附则可以很好地保留,这打破了金属表面ΔG(*O)与ΔG(*OOH)的线性关系[图6(b)],使得催化剂的活性与选择性有可能同时增加。在实际实验中,Sun等[45]以ZIF-8和1,10-菲咯啉作为氮碳源,以过渡金属乙酸盐作为金属源合成了系列过渡金属氮碳催化剂(M-N-C,M=Mn、Fe、Co、Ni、Cu)。如图6(c)、(d)所示,Fe-N-C催化剂的ORR活性虽然很高,但H2O2的选择性太低;相较之下,Co-N-C更适用于催化H2O2的合成。图6(e)采用DFT计算得到的火山图也表明了Co-N-C最适合2e- ORR的催化,即催化H2O2合成的性能最佳。因此,目前关于M-N-C催化剂的研究多是围绕Co-N-C展开。

图6

图6   (a) 所有考虑的金属原子以及SAC示意图;(b) 研究的31SACΔG(*OOH)ΔG(*O)的变化图[34](c) 在旋转圆盘电极(RRDE)中的线性扫描曲线(LSV)(d) 计算得出的H2O2选择性(%)和电子转移数(n)(e) 2e-途径(绿线)4e-途径(黑线)的热力学关系(火山)线,DFT计算的ORR起始电势值(圆圈)在左侧y轴上,实验测得电流密度ln(|j|)(十字和三角)在右侧y[45]

Fig. 6   (a) schematic illustration of all the metal atoms and considered SACs; (b) variations of ΔG(*O) and ΔG(*OOH) on the 31 studied SACs [34]; (c) Linear sweep voltammetry (LSV) curves in rotating ring-disk electrode (RRDE) measurements; (d) H2O2 selectivity (%) and the number of electrons (n) derived from RRDE data; (e) thermodynamic relations (volcano) lines for the 2e- (green solid line) and 4e- ORR (black solid line). The DFT calculated ORR onset potential values (circles) are on the left y-axis, while the experimental current densities (crosses and triangles), reported as ln(|j|), are on the right y-axis [45]


在提升Co-N-C类催化剂的性能方面,目前普遍认同的方法是引入含氧官能团。2019年,Li等[67]用硝酸氧化热解后的钴卟啉,将含氧官能团引入Co-N-C催化剂。测试结果显示,催化剂催化H2O2的产率和法拉第效率分别达813 mg/(L·h)和64.1%。这说明引入含氧官能团能够进一步提升Co-N-C的催化性能。对于该现象产生的原因以及发挥作用的含氧官能团类型,Minhee等[46]从几何效应出发给出了自己的观点。作者认为,M-N-C(尤其是Fe-N-C)存在包括本体M,掺杂物种N以及活性构型M-Nx-Cy在内的多种活性位点,而由于多种活性位点分布的不均一性,导致多个催化位点串联催化,使得“末端”吸附的氧气的另一端被毗邻的催化位点吸引而转变为“侧向”吸附,致使过渡金属氮碳类材料的选择性有所下降[图7(a)]。而引入含氧官能团就是预先占据部分活性位点以减少这种现象的发生。之后,Euiyeon等[43]从电子效应出发,通过DFT理论计算,给出了含氧官能团提高Co-N-C催化性能的可能原因。作者发现改变Co-N4附近连接的官能团可以调节其对氧气的吸附能[△G(*OOH)],富电子物质(如O等)的引入,可以提高△G(*OOH);反之缺电子物质(如H)则会导致△G(*OOH)下降[图7(b)]。而含氧官能团能与Co-N-C协同催化,正是因为氧的引入使Co-N4对氧气的吸附能△G(*OOH)更逼近火山顶部的最佳值。基于此,作者在NH3氛围下通过煅烧将Co原子引入GO,合成的Co-N-C(O)催化剂H2O2的产率高达(418±19)mmol/(gcat·h),且110 h后依旧可以保持98.7%的活性。不过,上述两篇文献更多的是从氧原子的角度出发解释了含氧官能团能提升Co-N-C催化性能的原因,对于发挥作用的含氧官能团类型并没有展开介绍。Zhang等[67]通过电化学处理对久置的Co-N-C催化剂进行激活,发现激活后的催化性能大幅提升,甚至超过了新制的Co-N-C催化剂。通过对比电激活前后的XPS O 1s谱[图7(c)、(d)]可以看出,久置的Co-N-C催化剂其羰基[C=O,O1,(531.2±0.2) eV]含量大大提升,而电激活后催化剂性能随环氧基/羟基[O2,(532.3±0.2) eV]含量的提升而提升。通过与H2O2氧化处理与热碱处理的结果对比,作者推测环氧基对Co-N-C催化性能的提升发挥着重要作用。

图7

图7   (a) 模拟的M-N-C催化剂氧化前后催化位点和氧气吸附变化[46](b) 通过ORR产生H2O(蓝色)H2O2(红色)计算出的催化活性火山[43](c) 老化后CoN@CNTsXPS O 1s光谱;(d) CoN@CNTsXPS O 1s光谱[67](e) 通过2e-(红色)4e-(黑色)路径计算不同构型SACsORR活火山图;(f) *OOH吸附能与活性位(OC原子)电荷态的相关性[88]

Fig. 7   (a) simulated Me-N-C catalyst before and after oxidation changes in catalytic sites and oxygen adsorption [46]; (b) calculated catalytic activity volcanoes for the production of H2O (blue) and H2O2 (red) via the ORR (bottom panel) [43]; XPS O 1s spectra of (c) aged CoN@CNTs (d) EA-CoN@CNTs [67]; (e) computed activity volcano plots of ORR via the 2e- (red color) or 4e- (black) pathway for SACs with varied configurations; (f) correlation between the *OOH adsorption energies and charge state of the active site (O-adjacent C atom) [88]


需要指出的是,目前文献普遍认为Co-N-C催化剂催化2e- ORR的活性位点是CoNC结构中的Co原子。但是,最近Qiao课题组[88]利用理论计算、SCN-毒化、原位衰减全反射表面增强红外吸收光谱(ATR-SEIRAS)等技术,对比CoNC催化剂(含Co-N4结构)和CoNOC催化剂(含Co-N2O2结构)催化ORR的过程,发现4e- ORR的活性位点是Co原子而2e- ORR的活性位点是与氧相连的碳原子。接着作者提出,可以通过调整第一配位层(与Co原子直接相连的原子,如N、O)与第二配位层(碳基材料)的原子,调节碳原子对中间体*OOH的吸附强度[ΔG(*OOH)],影响催化剂的活性与选择性[图7(e)、(f)]。值得一提的是,基于这一认识作者得到的CoNOC催化剂H2O2产率达590 mmol/(g·h),法拉第效率约为95%,是目前性能最好的催化剂之一。

除了从中心原子以及配位环境的角度出发外,也有研究者从分子及更高的层面出发,提出了新的提升催化剂性能的策略。例如,Smith等[89]借助超分子的概念将四苯基卟啉钴(Co-TPP)作为结构单元,将6个Co-TPP通过亚胺键连接组装成多孔超分子笼(Co-PB-1),同时利用化学还原得到胺连的Co-rPB-1[图8(a)]。测试结果表明Co-PB-1和Co-rPB-1对H2O2的选择性均接近100%,较Co-TPP单体(选择性为50%)有了很大的提高[图8(b)]。传统合成的M-N-C催化剂是粉末状结构,在使用时需将其负载于载体上,这使得催化剂的导电能力与传质速度均有所降低[90-91]。对此,Liu等[44]等在碳布上原位生长ZIF-67,通过一步碳化,合成了三维独立式电极Co SA/CC[图8(c)]。与负载在CC上的Co SA粉末相比,Co SA/CC有更高的催化H2O2合成性能,产量高达676 mol/(kgcat·h)。图8(d)的电化学阻抗谱(EIS)结果很好地解释了这一现象产生的原因,即Co SA/CC具有更小的电荷转移电阻。与此同时,由ZIF系列衍生的M-N-C催化剂因为存在大量的缺陷和高密度单金属位点,使得其石墨化程度不高,耐腐蚀性差[92]。而碳布作为基底材料,可以很好地改善这一问题,使催化剂的稳定性也得到提升。

图8

图8   (a) Co-TPP的化学结构和Co-PB-1(6) Co-rPB-1(6) 的最低能量构象模型;(b) 每种催化剂对应的H2O2法拉第效率[89](c) 分层独立式Co单原子电极制备示意图;(d) Co SA/CCCo-P/CCNyquist图,插图为等效电路[44]

Fig. 8   (a) chemical structure of Co-TPP and computed lowest energy conformational models of Co-PB-1(6) and Co-rPB-1(6); (b) the corresponding H2O2 Faradaic efficiencies for each catalyst [89]; (c) schematic illustration showing the preparation of hierarchical, free‐standing single-Co-atom electrode; (d) Nyquist plots of Co SA/CC and Co-P/CC, Inset shows the equivalent circuit [44]


3 总结与展望

本文综述了通过2e- ORR合成H2O2的碳基催化剂的研究进展。非金属原子掺杂碳材料原料易得、制备简单,是目前研究较为成熟的碳基催化剂材料,其在碱性环境中展现出优异的ORR活性和H2O2选择性,但由于碳原子对O2和中间体*OOH的吸附/活化较弱,非金属掺杂的碳材料在酸性介质中活性较差,过电位较高。通过引入单分散的过渡金属原子能使催化剂在酸性环境中展现出高活性和高选择性,部分活性甚至可与贵金属催化剂相媲美,但目前对其研究多集中于M-N-C,研究的范围相对较小,兼具高活性和高H2O2选择性的催化剂还有待开发。

总体来说,碳基催化剂在电催化H2O2合成中取得了一定的研究成果,但依旧存在着许多问题和挑战。

(1)H2O2分解问题。合成H2O2的最佳反应体系是酸性。然而目前大部分碳基催化剂,尤其是非金属掺杂碳材料更适用于碱性条件,在酸中ORR过电位较高。对此,一方面需要设计适用于酸性介质中兼具高活性和高H2O2选择性的催化剂。目前普遍认为,碳基催化剂在酸性介质中的活性在很大程度上取决于其表面活性位点的自旋和电荷密度,对此可采取缺陷构建、化学掺杂、诱导界面分子间电荷转移等措施进行调控。另一方面考虑将生成的H2O2与其他反应串联,通过现产现用减少损耗。

(2)碳基催化剂催化H2O2的具体机理还不明确。对于催化剂的活性位点依旧存在着争议,催化剂微观结构(孔径)、物理性质(导电率)对催化性能与机理的关系也仍未可知。对此,采用更为先进表征手段与原位电化学测试并结合高通量理论计算,确定碳基催化剂的活性位点和反应中间体(尤其是*OOH)的构型和路径,对研究碳基氧还原催化剂具有重大指导意义。

(3)电极界面的设计与调控对电合成H2O2过程至关重要。在实际生产过程中,氧还原发生在电极的气/液/固三相边界区域,此过程涉及到电子和质子传递,O2和反应物和产物的流入或流出等。构造合适的孔隙率和微结构,例如相互连接的分级孔,将有利于电解质的渗透以及离子与O2的快速输送,调控电极的亲疏水性以及制备自支撑电极能够在某种程度上避免在反应过程中水淹造成性能衰减的问题。此外,通过表面晶格结构、化学特性的精确调节能够有效抑制电极材料与电解液的副反应,提升材料的循环稳定性。

参考文献

YANG S, VERDAGUER-CASADEVALL A, ARNARSON L, et al. Toward the decentralized electrochemical production of H2O2: A focus on the catalysis[J]. ACS Catalysis, 2018, 8(5): 4064-4081.

[本文引用: 1]

ZHANG B S, XU W W, LU Z Y, et al. Recent progress on carbonaceous material engineering for electrochemical hydrogen peroxide generation[J]. Transactions of Tianjin University, 2020, 26(3): 188-196.

[本文引用: 1]

CAMPOS-MARTIN J M, BLANCO-BRIEVA G, FIERRO J L G. Hydrogen peroxide synthesis: An outlook beyond the anthraquinone process[J]. Angewandte Chemie International Edition, 2006, 45(42): 6962-6984.

[本文引用: 3]

ZHOU W, MENG X X, GAO J H, et al. Hydrogen peroxide generation from O2 electroreduction for environmental remediation: A state-of-the-art review[J]. Chemosphere, 2019, 225: 588-607.

[本文引用: 3]

陈坤, 袁颂东. 双氧水绿色合成工艺的研究进展[J]. 化学与生物工程, 2006, 23(7): 1-3.

[本文引用: 1]

CHEN K, YUAN S D. Research of the green synthesis process for hydrogen peroxide[J]. Chemistry & Bioengineering, 2006, 23(7): 1-3.

[本文引用: 1]

YI Y H, WANG L, LI G, et al. A review on research progress in the direct synthesis of hydrogen peroxide from hydrogen and oxygen: Noble-metal catalytic method, fuel-cell method and plasma method[J]. Catalysis Science & Technology, 2016, 6(6): 1593-1610.

[本文引用: 1]

胡长诚. 国外用过氧化氢环氧化丙烯制环氧丙烷研发近况[J]. 化学推进剂与高分子材料, 2006, 4(2): 1-5, 10.

[本文引用: 1]

HU C C. Foreign recent status of research and development on preparation of propylene oxide by epoxidation of propylene with hydrogen peroxide[J]. Chemical Propellants & Polymeric Materials, 2006, 4(2): 1-5, 10.

[本文引用: 1]

CHUNG T H, MESHREF M N A, HAI F I, et al. Microbial electrochemical systems for hydrogen peroxide synthesis: Critical review of process optimization, prospective environmental applications, and challenges[J]. Bioresource Technology, 2020, 313: https://core.ac.uk/display/343451114.

[本文引用: 1]

JIANG Y Y, NI P J, CHEN C X, et al. Selective electrochemical H2O2 production through two-electron oxygen electrochemistry[J]. Advanced Energy Materials, 2018, 8(31): doi: 10.1002/adma. 201801909.

[本文引用: 1]

SONG J, CHO S. Catalytic materials for efficient electrochemical production of hydrogen peroxide[J]. APL Materials, 2020, 8(5): doi: 10.1063/5.0002845.

[本文引用: 2]

LEE S, CHUNG Y M. An efficient Pd/C catalyst design based on sequential ligand exchange method for the direct synthesis of H2O2[J]. Materials Letters, 2019, 234: 58-61.

[本文引用: 1]

TIAN P F, DING D D, SUN Y, et al. Theoretical study of size effects on the direct synthesis of hydrogen peroxide over palladium catalysts[J]. Journal of Catalysis, 2019, 369: 95-104.

PUTHIARAJ P, YU K, AHN W S, et al. Pd nanoparticles on a dual acid-functionalized porous polymer for direct synthesis of H2O2: Contribution by enhanced H2 storage capacity[J]. Journal of Industrial and Engineering Chemistry, 2020, 81: 375-384.

[本文引用: 1]

TERANISHI M, KUNIMOTO T, NAYA S I, et al. Visible-light-driven hydrogen peroxide synthesis by a hybrid photocatalyst consisting of bismuth vanadate and bis(hexafluoroacetylacetonato)copper(II) complex[J]. The Journal of Physical Chemistry C, 2020, 124(6): 3715-3721.

[本文引用: 1]

XU Q, ZHAO P, SHI Y K, et al. Preparation of a g-C3N4/Co3O4/Ag2O ternary heterojunction nanocomposite and its photocatalytic activity and mechanism[J]. New Journal of Chemistry, 2020, 44(16): 6261-6268.

ZHANG P, TONG Y W, LIU Y, et al. Heteroatom dopants promote two-electron O2 reduction for photocatalytic production of H2O2 on polymeric carbon nitride[J]. Angewandte Chemie International Edition, 2020, 59(37): 16209-16217.

[本文引用: 1]

KO Y J, CHOI K, YANG B, et al. A catalyst design for selective electrochemical reactions: Direct production of hydrogen peroxide in advanced electrochemical oxidation[J]. Journal of Materials Chemistry A, 2020, 8(19): 9859-9870.

[本文引用: 1]

SONG X, LI N, ZHANG H, et al. Graphene-supported single nickel atom catalyst for highly selective and efficient hydrogen peroxide production[J]. ACS Applied Materials & Interfaces, 2020, 12(15): 17519-17527.

TANG C, JIAO Y, SHI B, et al. Coordination tunes selectivity: Two-electron oxygen reduction on high-loading molybdenum single-atom catalysts[J]. Angewandte Chemie International Edition, 2020, 59(23): 9171-9176.

[本文引用: 1]

JUNG E, SHIN H, HOOCH ANTINK W, et al. Correction to "recent advances in electrochemical oxygen reduction to H2O2: Catalyst and cell design"[J]. ACS Energy Letters, 2020, 5(6): doi: 10.1021/acsenergylett.0c01151.

[本文引用: 1]

WANG Y, WANG D, LI Y. A fundamental comprehension and recent progress in advanced Pt-based ORR nanocatalysts[J]. SmartMat, 2021, 2(1): 56-75.

[本文引用: 1]

CHOI C H, KWON H C, YOOK S, et al. Hydrogen peroxide synthesis via enhanced two-electron oxygen reduction pathway on carbon-coated Pt surface[J]. The Journal of Physical Chemistry C, 2014, 118(51): 30063-30070.

[本文引用: 2]

CHOI C H, KIM M, KWON H C, et al. Tuning selectivity of electrochemical reactions by atomically dispersed platinum catalyst[J]. Nature Communications, 2016, 7: 10922-10931.

[本文引用: 1]

LEDENDECKER M, PIZZUTILO E, MALTA G, et al. Isolated Pd sites as selective catalysts for electrochemical and direct hydrogen peroxide synthesis[J]. ACS Catalysis, 2020, 10(10): 5928-5938.

[本文引用: 1]

FORTUNATO G V, PIZZUTILO E, MINGERS A M, et al. Impact of palladium loading and interparticle distance on the selectivity for the oxygen reduction reaction toward hydrogen peroxide[J]. The Journal of Physical Chemistry C, 2018, 122(28): 15878-15885.

LEE S, CHUNG Y M. Direct synthesis of H2O2 over acid-treated Pd/C catalyst derived from a Pd-Co core-shell structure[J]. Catalysis Today, 2020, 352: 270-278.

[本文引用: 1]

PIZZUTILO E, KASIAN O, CHOI C H, et al. Electrocatalytic synthesis of hydrogen peroxide on Au-Pd nanoparticles: From fundamentals to continuous production[J]. Chemical Physics Letters, 2017, 683: 436-442.

[本文引用: 1]

SIAHROSTAMI S, VERDAGUER-CASADEVALL A, KARAMAD M, et al. Enabling direct H2O2 production through rational electrocatalyst design[J]. Nature Materials, 2013, 12(12): 1137-1143.

[本文引用: 1]

杨子凤, 焦芮, 张万里, 等. 燃料电池阴极氧还原非铂类催化剂研究进展[J]. 化工新型材料, 2019, 47(11): 227-231.

[本文引用: 2]

YANG Z F, JIAO R, ZHANG W L, et al. Research progress of cathodic oxygen reduction non-platinum catalyst for fuel cell[J]. New Chemical Materials, 2019, 47(11): 227-231.

[本文引用: 2]

WANG Q, SHAN G L, SUN-WATERHOUSE D, et al. Engineering local coordination environments and site densities for high-performance Fe-N-C oxygen reduction reaction electrocatalysis[J]. SmartMat, 2021, 2(2): 154-175.

[本文引用: 1]

WANG X, VASILEFF A, JIAO Y, et al. Electronic and structural engineering of carbon-based metal-free electrocatalysts for water splitting[J]. Advanced Materials, 2019, 31(13): doi: 10.1002/adma.201803625.

[本文引用: 1]

VISWANATHAN V, HANSEN H A, ROSSMEISL J, et al. Unifying the 2e- and 4e- reduction of oxygen on metal surfaces[J]. The Journal of Physical Chemistry Letters, 2012, 3(20): 2948-2951.

[本文引用: 1]

ZHANG J Y, ZHANG H C, CHENG M J, et al. Tailoring the electrochemical production of H2O2: Strategies for the rational design of high-performance electrocatalysts[J]. Small, 2020, 16(15): doi: 10.1002/smll.201902845.

GUO X Y, LIN S R, GU J X, et al. Simultaneously achieving high activity and selectivity toward two-electron O2 electroreduction: The power of single-atom catalysts[J]. ACS Catalysis, 2019, 9(12): 11042-11054.

[本文引用: 3]

KIM J H, KIM Y T, JOO S H. Electrocatalyst design for promoting two-electron oxygen reduction reaction: Isolation of active site atoms[J]. Current Opinion in Electrochemistry, 2020, 21: 109-116.

[本文引用: 1]

JIANG K, ZHAO J J, WANG H T. Catalyst design for electrochemical oxygen reduction toward hydrogen peroxide[J]. Advanced Functional Materials, 2020, 30(35): doi: 10.1002/adfm.202003321.

[本文引用: 1]

吴越, 杨向光. 现代催化原理[M]. 北京: 科学出版社, 2005.

[本文引用: 1]

WU Y, YANG X G. Principles of modern catalysis[M]. Beijing: Science Press, 2005.

[本文引用: 1]

OLOMAN C, WATKINSON A P. Hydrogen peroxide production in trickle-bed electrochemical reactors[J]. Journal of Applied Electrochemistry, 1979, 9(1): 117-123.

[本文引用: 2]

LEE Y H, LI F, CHANG K H, et al. Novel synthesis of N-doped porous carbons from collagen for electrocatalytic production of H2O2[J]. Applied Catalysis B: Environmental, 2012, 126: 208-214.

[本文引用: 3]

ZHU Y S, QIU S, MA F, et al. Melamine-derived carbon electrode for efficient H2O2 electro-generation[J]. Electrochimica Acta, 2018, 261: 375-383.

LU Z Y, CHEN G X, SIAHROSTAMI S, et al. High-efficiency oxygen reduction to hydrogen peroxide catalysed by oxidized carbon materials[J]. Nature Catalysis, 2018, 1(2): 156-162.

[本文引用: 4]

XIA Y, SHANG H, ZHANG Q G, et al. Electrogeneration of hydrogen peroxide using phosphorus-doped carbon nanotubes gas diffusion electrodes and its application in electro-Fenton[J]. Journal of Electroanalytical Chemistry, 2019, 840: 400-408.

[本文引用: 1]

JUNG E, SHIN H, LEE B H, et al. Atomic-level tuning of Co-N-C catalyst for high-performance electrochemical H2O2 production[J]. Nature Materials, 2020, 19(4): 436-442.

[本文引用: 5]

ZHANG J C, YANG H B, GAO J J, et al. Design of hierarchical, three-dimensional free-standing single-atom electrode for H2O2 production in acidic media[J]. Carbon Energy, 2020, 2(2): 276-282.

[本文引用: 4]

SUN Y, SILVIOLI L, SAHRAIE N R, et al. Activity-selectivity trends in the electrochemical production of hydrogen peroxide over single-site metal-nitrogen-carbon catalysts[J]. Journal of the American Chemical Society, 2019, 141(31): 12372-12381.

[本文引用: 3]

SUK M, CHUNG M W, HAN M H, et al. Selective H2O2 production on surface-oxidized metal-nitrogen-carbon electrocatalysts[J]. Catalysis Today, 2021, 359: 99-105.

[本文引用: 4]

SA Y J, KIM J H, JOO S H. Active edge-site-rich carbon nanocatalysts with enhanced electron transfer for efficient electrochemical hydrogen peroxide production[J]. Angewandte Chemie International Edition, 2019, 58(4): 1100-1105.

[本文引用: 1]

LIU Y, ZHANG J S, HE S Q, et al. Defect engineering of single-walled carbon nanohorns for stable electrochemical synthesis of hydrogen peroxide with high selectivity in neutral electrolytes[J]. Journal of Energy Chemistry, 2021, 54: 118-123.

SAN ROMAN D, KRISHNAMURTHY D, GARG R, et al. Engineering three-dimensional (3D) out-of-plane graphene edge sites for highly selective two-electron oxygen reduction electrocatalysis[J]. ACS Catalysis, 2020, 10(3): 1993-2008.

[本文引用: 1]

FORTI J C, ROCHA R S, LANZA M R V, et al. Electrochemical synthesis of hydrogen peroxide on oxygen-fed graphite/PTFE electrodes modified by 2-ethylanthraquinone[J]. Journal of Electroanalytical Chemistry, 2007, 601(1/2): 63-67.

[本文引用: 1]

BABAEI-SATI R, BASIRI PARSA J. Electrogeneration of H2O2 using graphite cathode modified with electrochemically synthesized polypyrrole/MWCNT nanocomposite for electro-Fenton process[J]. Journal of Industrial and Engineering Chemistry, 2017, 52: 270-276.

VALIM R B, REIS R M, CASTRO P S, et al. Electrogeneration of hydrogen peroxide in gas diffusion electrodes modified with tert-butyl-anthraquinone on carbon black support[J]. Carbon, 2013, 61: 236-244.

XIAO X, WANG T J, BAI J, et al. Enhancing the selectivity of H2O2 electrogeneration by steric hindrance effect[J]. ACS Applied Materials & Interfaces, 2018, 10(49): 42534-42541.

[本文引用: 1]

YU F K, ZHOU M H, YU X M. Cost-effective electro-Fenton using modified graphite felt that dramatically enhanced on H2O2 electro-generation without external aeration[J]. Electrochimica Acta, 2015, 163: 182-189.

[本文引用: 1]

HASANZADEH A, KHATAEE A, ZAREI M, et al. Two-electron oxygen reduction on fullerene C60-carbon nanotubes covalent hybrid as a metal-free electrocatalyst[J]. Scientific Reports, 2019, 9: 13780-13793.

YANG W L, ZHOU M H, CAI J J, et al. Ultrahigh yield of hydrogen peroxide on graphite felt cathode modified with electrochemically exfoliated graphene[J]. Journal of Materials Chemistry A, 2017, 5(17): 8070-8080.

[本文引用: 1]

SUN Y Y, SINEV I, JU W, et al. Efficient electrochemical hydrogen peroxide production from molecular oxygen on nitrogen-doped mesoporous carbon catalysts[J]. ACS Catalysis, 2018, 8(4): 2844-2856.

[本文引用: 1]

ZHANG J Y, ZHANG G, JIN S Y, et al. Graphitic N in nitrogen-Doped carbon promotes hydrogen peroxide synthesis from electrocatalytic oxygen reduction[J]. Carbon, 2020, 163: 154-161.

[本文引用: 4]

LI L Q, TANG C, ZHENG Y, et al. Tailoring selectivity of electrochemical hydrogen peroxide generation by tunable pyrrolic-nitrogen-carbon[J]. Advanced Energy Materials, 2020, 10(21): doi: 10.1002/aenm.202000789.

[本文引用: 5]

ZHU J Y, XIAO X, ZHENG K, et al. KOH-treated reduced graphene oxide: 100% selectivity for H2O2 electroproduction[J]. Carbon, 2019, 153: 6-11.

[本文引用: 5]

ZHAO K, SU Y, QUAN X, et al. Enhanced H2O2 production by selective electrochemical reduction of O2 on fluorine-doped hierarchically porous carbon[J]. Journal of Catalysis, 2018, 357: 118-126.

[本文引用: 2]

JIA N, YANG T, SHI S F, et al. N, F-codoped carbon nanocages: An efficient electrocatalyst for hydrogen peroxide electroproduction in alkaline and acidic solutions[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(7): 2883-2891.

[本文引用: 4]

ZHAO H, SHEN X, CHEN Y, et al. A COOH-terminated nitrogen-doped carbon aerogel as a bulk electrode for completely selective two-electron oxygen reduction to H2O2[J]. Chemical Communications, 2019, 55(44): 6173-6176.

[本文引用: 3]

ZHANG C, ZHANG J, ZHANG J, et al. Tuning coal into graphene-like manocarbon for electrochemical H2O2 production with nearly 100% faraday efficiency[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(28): 9369-9375.

[本文引用: 1]

LI B Q, ZHAO C X, LIU J N, et al. Electrosynthesis of hydrogen peroxide synergistically catalyzed by atomic CO-Nx-C sites and oxygen functional groups in noble-metal-free electrocatalysts[J]. Advanced Materials, 2019, 31(35): doi: 10.1002/adma.201808173.

[本文引用: 1]

GAO J J, YANG H B, HUANG X, et al. Enabling direct H2O2 production in acidic media through rational design of transition metal single atom catalyst[J]. Chem, 2020, 6(3): 658-674.

[本文引用: 1]

ZHANG Q R, TAN X, BEDFORD N M, et al. Direct insights into the role of epoxy groups on cobalt sites for acidic H2O2 production[J]. Nature Communications, 2020, 11: 4181-4191.

[本文引用: 5]

JIANG K, BACK S, AKEY A J, et al. Highly selective oxygen reduction to hydrogen peroxide on transition metal single atom coordination[J]. Nature Communications, 2019, 10(1): 3997-4008.

[本文引用: 1]

钟国玉, 王红娟, 余皓, 等. 氧还原碳基非贵金属电催化剂研究进展[J]. 化学学报, 2017, 75(10): 943-966.

[本文引用: 1]

ZHONG G Y, WANG H J, YU H, et al. A review of carbon-based non-noble catalysts for oxygen reduction reaction[J]. Acta Chimica Sinica, 2017, 75(10): 943-966.

[本文引用: 1]

HE W, WANG Y, JIANG C, et al. Structural effects of a carbon matrix in non-precious metal O2- reduction electrocatalysts[J]. Chemical Society Reviews, 2016, 45(9): 2396-2409.

[本文引用: 1]

GONG K, DU F, XIA Z, et al. Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction[J]. Science, 2009, 323(5915): 760-764.

[本文引用: 1]

SUN Y, LI S, JOVANOV Z P, et al. Structure, activity, and faradaic efficiency of nitrogen-doped porous carbon catalysts for direct electrochemical hydrogen peroxide production[J]. ChemSusChem, 2018, 11(19): 3388-3395.

[本文引用: 1]

RAO C V, CABRERA C R, ISHIKAWA Y. In search of the active site in nitrogen-doped carbon nanotube electrodes for the oxygen reduction reaction[J]. The Journal of Physical Chemistry Letters, 2010, 1(18): 2622-2627.

GUO D, SHIBUYA R, AKIBA C, et al. Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts[J]. Science, 2016, 351(6271): 361-365.

IGLESIAS D, GIULIANI A, MELCHIONNA M, et al. N-doped graphitized carbon nanohorns as a forefront electrocatalyst in highly selective O2 reduction to H2O2[J]. Chem, 2018, 4(1): 106-123.

[本文引用: 1]

陈旭, 何大平, 木士春. 掺氮石墨烯研究[J]. 化学进展, 2013, 25(8): 1292-1301.

[本文引用: 1]

CHEN X, HE D P, MU S C. Nitrogen-doped graphene[J]. Progress in Chemistry, 2013, 25(8): 1292-1301.

[本文引用: 1]

BI Z H, KONG Q Q, CAO Y F, et al. Biomass-derived porous carbon materials with different dimensions for supercapacitor electrodes: A review[J]. Journal of Materials Chemistry A, 2019, 7(27): 16028-16045.

[本文引用: 2]

ZHANG F P, LIU L, CHEN L, et al. A cellulose dissolution and encapsulation strategy to prepare carbon nanospheres with ultra-small size and high nitrogen content for the oxygen reduction reaction[J]. New Journal of Chemistry, 2020, 44(25): 10613-10620.

[本文引用: 1]

YANG Y R, HE F, SHEN Y F, et al. A biomass derived N/C-catalyst for the electrochemical production of hydrogen peroxide[J]. Chemical Communications, 2017, 53(72): 9994-9997.

[本文引用: 1]

LIAO M J, WANG Y L, LI S S, et al. Electrocatalyst derived from abundant biomass and its excellent activity for in situ H2O2 production[J]. ChemElectroChem, 2019, 6(18): 4877-4884.

[本文引用: 1]

MIAO J, ZHU H, TANG Y, et al. Graphite felt electrochemically modified in H2SO4 solution used as a cathode to produce H2O2 for pre-oxidation of drinking water[J]. Chemical Engineering Journal, 2014, 250: 312-318.

[本文引用: 1]

LU X Y, WANG D, WU K H, et al. Oxygen reduction to hydrogen peroxide on oxidized nanocarbon: Identification and quantification of active sites[J]. Journal of Colloid and Interface Science, 2020, 573: 376-383.

[本文引用: 1]

KIM H W, ROSS M B, KORNIENKO N, et al. Efficient hydrogen peroxide generation using reduced graphene oxide-based oxygen reduction electrocatalysts[J]. Nature Catalysis, 2018, 1(4): 282-290.

[本文引用: 1]

HONDA K, WAKI Y, MATSUMOTO A, et al. Amorphous carbon having higher catalytic activity toward oxygen reduction reaction: Quinone and carboxy groups introduced onto its surface[J]. Diamond and Related Materials, 2020, 107: doi: 10.1016/j.diamond.2020.107900.

[本文引用: 1]

KIM H W, PARK H, ROH J S, et al. Carbon defect characterization of nitrogen-doped reduced graphene oxide electrocatalysts for the two-electron oxygen reduction reaction[J]. Chemistry of Materials, 2019, 31(11): 3967-3973.

[本文引用: 1]

KIM H W, BUKAS V J, PARK H, et al. Mechanisms of two-electron and four-electron electrochemical oxygen reduction reactions at nitrogen-doped reduced graphene oxide[J]. ACS Catalysis, 2020, 10(1): 852-863.

CHEN S, CHEN Z, SIAHROSTAMI S, et al. Designing boron nitride Islands in carbon materials for efficient electrochemical synthesis of hydrogen peroxide[J]. Journal of the American Chemical Society, 2018, 140(25): 7851-7859.

[本文引用: 3]

TANG C, CHEN L, LI H J, et al. Tailoring acidic oxygen reduction selectivity on single-atom catalysts via modification of first and second coordination spheres[J]. Journal of the American Chemical Society, 2021, 143(20): 7819-7827.

[本文引用: 3]

SMITH P T, KIM Y, BENKE B P, et al. Supramolecular tuning enables selective oxygen reduction catalyzed by cobalt porphyrins for direct electrosynthesis of hydrogen peroxide[J]. Angewandte Chemie International Edition, 2020, 59(12): 4902-4907.

[本文引用: 3]

GU J, HSU C S, BAI L, et al. Atomically dispersed Fe3+ sites catalyze efficient CO2 electroreduction to CO[J]. Science, 2019, 364(6445): 1091-1094.

[本文引用: 1]

ZHU C Z, FU S F, SONG J H, et al. Self-assembled Fe-N-doped carbon nanotube aerogels with single-atom catalyst feature as high-efficiency oxygen reduction electrocatalysts[J]. Small, 2017, 13(15): doi: 10.1002/smll.201603407.

[本文引用: 1]

HE Y, GUO H, HWANG S, et al. Single cobalt sites dispersed in hierarchically porous nanofiber networks for durable and high-power PGM-free cathodes in fuel cells[J]. Advanced Materials, 2020, 32(46): doi: 10.1002/adma.202003577.

[本文引用: 1]

/