A review of the research progress of the lithium battery electrolyte-conductivity model recently is described from the classic solution model, statistical thermodynamic model, semi-empirical model, and mathematical-statistical method. The statistical thermodynamics theory has gradually replaced the classical solution theory in studies on the transport mechanism of lithium battery electrolytes. To better understand the microstructure and interaction between microscopic particles, a high-level thermodynamic theoretical model is created from the microscopic properties of molecules and ions. The prediction and optimization of the conductivity of lithium battery electrolyte changed from the conventional semi-empirical model to a mathematical, statistical method to obtain ideal test results and draw scientific conclusions with a small-test scale, short test cycle, and low test cost.
Keywords:lithium battery electrolyte
;
conductivity model
;
transport mechanism
;
prediction
ZHOU Sifei. Research progress in the conductivity model of lithium battery electrolytes[J]. Energy Storage Science and Technology, 2022, 11(11): 3688-3698
LOGAN E R, TONITA E M, GERING K L, et al. A critical evaluation of the advanced electrolyte model[J]. Journal of the Electrochemical Society, 2018, 165(14): A3350-A3359.
LI Q, CAO Z, WAHYUDI W, et al. Unraveling the new role of an ethylene carbonate solvation shell in rechargeable metal ion batteries[J]. ACS Energy Letters, 2020, 6(1): 69-78.
MING J, LI M, KUMAR P, et al. Redox species-based electrolytes for advanced rechargeable lithium-ion battery[J]. ACS Energy Letters, 2016, 1(3): 529-534.
JUSTICE J C, JUSTICE M C, MICHELETTI C. Ion pairs as a theoretical limit case concept at high dilution for equilibrium and transport excess properties[J]. Pure and Applied Chemistry, 1981, 53(7): 1291-1299.
DE DIEGO A, USOBIAGA A, FERNÁNDEZ L A, et al. Application of the electrical conductivity of concentrated electrolyte solutions to industrial process control and design: From experimental measurement towards prediction through modelling[J]. TrAC Trends in Analytical Chemistry, 2001, 20(2): 65-78.
KRUMGALZ B, BARTHEL J. Conductivity study of electrolyte solutions in dimethylformamide at various temperatures[J]. Zeitschrift Für Physikalische Chemie, 1984, 142: 167-178.
PETROWSKY M, FRECH R. Application of the compensated arrhenius formalism to self-diffusion: Implications for ionic conductivity and dielectric relaxation[J]. The Journal of Physical Chemistry B, 2010, 114(26): 8600-8605.
HAN H B, ZHOU S S, ZHANG D J, et al. Lithium bis(fluorosulfonyl)imide (LiFSI) as conducting salt for nonaqueous liquid electrolytes for lithium-ion batteries: Physicochemical and electrochemical properties[J]. Journal of Power Sources, 2011, 196(7): 3623-3632.
STALLWORTH P E, FONTANELLA J J, WINTERSGILL M C, et al. NMR, DSC and high pressure electrical conductivity studies of liquid and hybrid electrolytes[J]. Journal of Power Sources, 1999, 81/82: 739-747.
FONTANELLA J J, WINTERSGILL M C, IMMEL J J. Dynamics in propylene carbonate and propylene carbonate containing LiPF6[J]. The Journal of Chemical Physics, 1999, 110(11): 5392-5402.
STICKEL F, FISCHER E W, RICHERT R. Dynamics of glass-forming liquids. II. Detailed comparison of dielectric relaxation, dc-conductivity, and viscosity data[J]. The Journal of Chemical Physics, 1996, 104(5): 2043-2055.
MATSUDA Y, MORITA M, YAMASHITA T. Conductivity of the LiBF4/mixed ether electrolytes for secondary lithium cells[J]. Journal of the Electrochemical Society, 1984, 131: 2821-2827.
BARTHEL J, GORES H. Data on transport properties of electrolyte solutions for applied research and technology[J]. Pure and Applied Chemistry, 1985, 57: 1071-1082.
DEBYE P, HUCKEL E. De la theorie des electrolytes. I. abaissement du point de congelation et phenomenes associes[J]. Physikalische Zeitschrift, 1923, 24(9): 185-206.
FUOSS R M, KRAUS C A. Properties of electrolytic solutions. IV. The conductance minimum and the formation of triple ions due to the action of coulomb forces1[J]. Journal of the American Chemical Society, 1933, 55(6): 2387-2399.
FUOSS R M, HSIA K L. Association of 1-1 salts in water[J]. Proceedings of the National Academy of Sciences of the United States of America, 1967, 57(6): 1550-1557.
FUOSS R M. Parametric analysis of conductance data[J]. Proceedings of the National Academy of Sciences of the United States of America, 1974, 71(11): 4491-4495.
FUOSS R M. Conductance-concentration function for associated symmetrical electrolytes. Supplementary comments[J]. The Journal of Physical Chemistry, 1976, 80: 2091-2093.
FUOSS R M. Paired ions: Dipolar pairs as subset of diffusion pairs[J]. Proceedings of the National Academy of Sciences of the United States of America, 1978, 75(1): 16-20.
FUOSS R M, ONSAGER L. Conductance of strong electrolytes at finite dilutions[J]. Proceedings of the National Academy of Sciences, 1955, 41(5): 274-283.
FUOSS R M, ONSAGER L. Conductance of unassociated electrolytes[J]. The Journal of Physical Chemistry, 1957, 61(5): 668-682.
FUOSS R M, ONSAGER L, SKINNER J F. The conductance of symmetrical electrolytes. V. the conductance Equation1, 2[J]. The Journal of Physical Chemistry, 1965, 69(8): 2581-2594.
BERNARD O, KUNZ W, TURQ P, et al. Conductance in electrolyte solutions using the mean spherical approximation[J]. Journal of Physical Chemistry, 1992, 96(9): 3833-3840.
TURQ P, BLUM L, BERNARD O, et al. Conductance in associated electrolytes using the mean spherical approximation[J]. The Journal of physical chemistry, 1995, 99(2): 822-827.
HAN J L. Calculation of conductance for organic solutions of lithium salt using mean spherical approximation theory[J]. Journal of Chemical Industry and Engineering (China), 2004, 55(2): 268-270.
EBELING W, ROSE J. Conductance theory of concentrated electrolytes in an MSA-type approximation[J]. Journal of Solution Chemistry, 1981, 10(9): 599-609.
BARTHEL, KRIENKE, HOLOVKO, et al. The application of the associative mean spherical approximation in the theory of nonaqueous electrolyte solutions[J]. Condensed Matter Physics, 2000, 3: 657.
WANG P M, ANDERKO A, YOUNG R. Modeling electrical conductivity in concentrated and mixed-solvent electrolyte solutions[J]. Industrial & Engineering Chemistry Research, 2004, 43: 8083-8092.
VARELA L M, CARRETE J, TURMINE M, et al. Pseudolattice theory of the surface tension of ionic liquid-water mixtures[J]. The Journal of Physical Chemistry B, 2009, 113(37): 12500-12505.
VARELA L M, GARCIA M, SARMIENTO F, et al. Pseudolattice theory of strong electrolyte solutions[J]. The Journal of Chemical Physics, 1997, 107(16): 6415-6419.
CHAGNES A, CARRÉ B, WILLMANN P, et al. Ion transport theory of nonaqueous electrolytes. LiClO4 in γ-butyrolactone: The quasi lattice approach[J]. Electrochimica Acta, 2001, 46(12): 1783-1791.
SELF J, FONG K D, PERSSON K A. Transport in superconcentrated LiPF6 and LiBF4/propylene carbonate electrolytes[J]. ACS Energy Letters, 2019, 4(12): 2843-2849.
DU Y P, LIU B, HOU H Y, et al. Research progress in thermodynamic models of electrolyte solution[J]. Contemporary Chemical Industry, 2016, 45(11): 2632-2637.
GERING K L. Prediction of electrolyte conductivity: Results from a generalized molecular model based on ion solvation and a chemical physics framework[J]. Electrochimica Acta, 2017, 225: 175-189.
DAVE A, GERING K L, MITCHELL J M, et al. Benchmarking conductivity predictions of the advanced electrolyte model (AEM) for aqueous systems[J]. Journal of The Electrochemical Society, 2019, 167(1): 013514.
LOGAN E R, TONITA E M, GERING K L, et al. A study of the physical properties of Li-ion battery electrolytes containing esters[J]. Journal of The Electrochemical Society, 2018, 165(2): A21.
CHAYAMBUKA K, CARDINAELS R, GERING K L, et al. An experimental and modeling study of sodium-ion battery electrolytes[J]. Journal of Power Sources, 2021, 516: doi: 10.1016/j.jpowsour.2021.230658.
PANG M C, MARINESCU M, WANG H Z, et al. Mechanical behaviour of inorganic solid-state batteries: Can we model the ionic mobility in the electrolyte with Nernst-Einstein's relation? [J]. Physical Chemistry Chemical Physics: PCCP, 2021, 23(48): 27159-27170.
BERNARD O, AUPIAIS J. Conductivity of weak electrolytes for buffer solutions: Modeling within the mean spherical approximation[J]. Journal of Molecular Liquids, 2018, 272: 631-637.
ALDER B J, WAINWRIGHT T E. Studies in molecular dynamics. II. behavior of a small number of elastic spheres[J]. The Journal of Chemical Physics, 1960, 33(5): 1439-1451.
CHHIH A, TURQ P, BERNARD O, et al. Transport coefficients and apparent charges of concentrated electrolyte solutions-Equations for practical use[J]. Berichte der Bunsengesellschaft für physikalische Chemie, 1994, 98(12): 1516-1525.
BABA T, KAJITA S, SHIGA T, et al. Fast evaluation technique for the shear viscosity and ionic conductivity of electrolyte solutions[J]. Scientific Reports, 2022, 12: 7291.
KUBISIAK P, EILMES A. Estimates of electrical conductivity from molecular dynamics simulations: How to invest the computational effort[J]. The Journal of Physical Chemistry B, 2020, 124(43): 9680-9689. .
BORODIN O, SMITH G D. Quantum chemistry and molecular dynamics simulation study of dimethyl carbonate: Ethylene carbonate electrolytes doped with LiPF6[J]. The Journal of Physical Chemistry B, 2009, 113(6): 1763-1776.
CHAE Y, LIM C, JEON J, et al. Lithium-ion solvation structure in organic carbonate electrolytes at low temperatures[J]. The Journal of Physical Chemistry Letters, 2022, 13(33): 7881-7888.
OZAKI H, KURATANI K, SANO H, et al. A Monte-Carlo simulation of ionic conductivity and viscosity of highly concentrated electrolytes based on a pseudo-lattice model[J]. The Journal of Chemical Physics, 2017, 147(3): 034904.
HOLOVKO M. Concept of ion association in the theory of electrolyte solutions[C]//Ionic Soft Matter: Modern Trends in Theory and Applications, 2005: 45-81.
VALØEN L O, REIMERS J N. Transport properties of LiPF6-based Li-ion battery electrolytes[J]. Journal of The Electrochemical Society, 2005, 152(5): A882.
BARTHEL J, GERBER R, GORES H J. The temperature dependence of the properties of electrolyte solutions. VI. Triple ion formation in solvents of low permittivity exemplified by LiBF4 solutions in dimethoxyethane[J]. Berichte der Bunsengesellschaft für physikalische Chemie, 1984, 88(7): 616-622.
CASTEEL J F, AMIS E S. Conductance of sodium perchlorate in water-N-methylacetamide (NMA) solvent system[J]. Journal of Chemical & Engineering Data, 1974, 19(2): 121-128.
CASTEEL J, AMIS E S. Specific conductance of concentrated solutions of magnesium salts in water-ethanol system[J]. Journal of Chemical & Engineering Data, 1972, 17: 55-59.
WERBLAN L, BAŁKOWSKA A. Concentrated electrolyte solutions in organic solvents. Their specific conductance and analysis of Casteel—Amis equation[J]. Journal of Electroanalytical Chemistry, 1993, 354(1/2): 25-38.
DE DIEGO A, MADARIAGA J M, CHAPELA E. Empirical model of general application to fit (k, c, T) experimental data from concentrated aqueous electrolyte solutions[J]. Electrochimica Acta, 1997, 42(9): 1449-1456.
DING M S, XU K, JOW T R. Conductivity and viscosity of PC-DEC and PC-EC solutions of LiBOB[J]. Journal of The Electrochemical Society, 2004, 152(1): A132.
DING M. Casteel-Amis equation: Its extension from univariate to multivariate and its use as a two-parameter function[J]. Journal of Chemical & Engineering Data, 2004, 49: 1469-1474.
DING M. Electrolytic conductivity and glass transition temperature as functions of salt content, solvent composition, or temperature for LiPF6 in propylene carbonate + diethyl carbonate[J]. Journal of Chemical & Engineering Data, 2003, 49: 1102-1109.
LUNDGREN H, BEHM M, LINDBERGH G. Electrochemical characterization and temperature dependency of mass-transport properties of LiPF6 in EC: DEC[J]. Journal of the Electrochemical Society, 2014, 162(3): A413-A420.
YIM C H, ABU-LEBDEH Y. Connection between phase diagram, structure and ion transport in liquid, aqueous electrolyte solutions of lithium chloride[J]. Journal of The Electrochemical Society, 2018, 165(3): A547.
SCHWEIGER H G, MULTERER M, SCHWEIZER-BERBERICH M, et al. Finding conductivity optima of battery electrolytes by conductivity measurements guided by a simplex algorithm[J]. Journal of the Electrochemical Society, 2005, 152(3): A577.
HUANG J Y, YU B T, LI F S, et al. Forecasting conductivities of LiBOB-EC/DEC electrolytes by the mass triangle model[J]. International Journal of Minerals, Metallurgy and Materials, 2009, 16(4): 463-467.
XIAO L F, CAO Y L, AI X P, et al. Optimization of EC-based multi-solvent electrolytes for low temperature applications of lithium-ion batteries[J]. Electrochimica Acta, 2004, 49(27): 4857-4863.
DOUCEY L, REVAULT M, LAUTIÉ A, et al. A study of the Li/Li+ couple in DMC and PC solvents: Part 1: Characterization of LiAsF6/DMC and LiAsF6/PC solutions[J]. Electrochimica Acta, 1999, 44(14): 2371-2377.
ZHOU S F, LI J, ZHANG D M, et al. Optimization design of electrolyte conductivity of Lithium ion battery based on statistics method[J]. Energy Storage Science and Technology, 2022, 11(10): 3364-3370.