储能科学与技术 ›› 2022, Vol. 11 ›› Issue (11): 3688-3698.doi: 10.19799/j.cnki.2095-4239.2022.0344
收稿日期:
2022-06-21
修回日期:
2022-07-06
出版日期:
2022-11-05
发布日期:
2022-11-09
通讯作者:
李骏
E-mail:sz14f2601@163.com;lijun.sshy@sinopec.com
作者简介:
周思飞(1993—),女,硕士,主要研究方向锂离子电池电解液,E-mail:sz14f2601@163.com;
Sifei ZHOU(), Jun LI(), Xiaofei WANG, Daoming ZHANG, Haoliang XUE
Received:
2022-06-21
Revised:
2022-07-06
Online:
2022-11-05
Published:
2022-11-09
Contact:
Jun LI
E-mail:sz14f2601@163.com;lijun.sshy@sinopec.com
摘要:
本文从经典溶液模型、统计热力学模型、半经验模型和数理统计方法四个方面阐述了近年来国内外锂电池电解液溶液电导率模型的研究进展。锂电池电解液溶液的离子传输机理研究已逐渐从经典的溶液理论转向统计热力学理论,从分子和离子的微观参数出发建立高水平的热力学理论模型,以更好地理解微观结构和微观粒子相互作用。锂电池电解液溶液电导率的预测以及优化则从传统的半经验模型转向数理统计方法,从而以较小的试验规模、较短的试验周期和较低的试验成本,获得理想的试验结果以及得出科学的结论。
中图分类号:
周思飞, 李骏, 王小飞, 张道明, 薛浩亮. 锂电池电解液电导率模型研究进展[J]. 储能科学与技术, 2022, 11(11): 3688-3698.
Sifei ZHOU, Jun LI, Xiaofei WANG, Daoming ZHANG, Haoliang XUE. Research progress in the conductivity model of lithium battery electrolytes[J]. Energy Storage Science and Technology, 2022, 11(11): 3688-3698.
表1
电解液电导率经典溶液模型"
方法 | 溶质 | 溶剂 | 温度/℃ | 盐浓度/(mol/kg) | 平均相对误差/% | 引用文献 |
---|---|---|---|---|---|---|
阿仑尼乌斯方程 | LiClO4 | EC+EMC | -20~60 | 1 | — | [ |
LiPF6 | ||||||
LiBF4 | ||||||
LiTFSI | ||||||
LiFSI | ||||||
VTF方程 | LiPF6 | EC+MOEMC,MOEMC | -60~70 | 0.5~1.25 | — | [ |
LiAsF6 | EC+MOEMC | 1 | ||||
LiPF6 | PC+EC,EC+DMC | -80~10 | 1 | — | [ | |
LiPF6 | PC+EC,PC | 0~25 | 1 | 5.1 | [ | |
平均球近似理论 | LiPF6 | PC,2DG+PC,PMDETA+PC | 25 | 0~1.1 | 4.8 | [ |
LiClO4 | DME,DMC | 25 | 0~1(mol/L) | — | [ | |
LiClO4 | PC+DEC,PC | 25 | 0~2 | — | [ | |
LiPF6 | PC+DEC,PC | 25 | 0~2.5 | |||
有序晶格模型 | LiClO4 | γBL | 25 | 0.2~2 | — | [ |
表2
电解液电导率统计热力学模型"
方法 | 溶质 | 溶剂 | 温度/℃ | 盐浓度/(mol/kg) | 平均相对误差/% | 引用文献 |
---|---|---|---|---|---|---|
AEM | 常用锂盐 | 碳酸酯、羧酸酯、醚类、砜类 | 0~40 | 0.5~3 | 10 | [ |
LiPF6 | PC,PC+EC+DMC,PC+DEC+DMC EC+EMC,EC+DEC+DMC+EP | -40~80 | 0~3.5 | 5 | [ | |
LiBOB | PC+EA,EC+EMC | |||||
LiTFSI | PC+DME | |||||
LiFSI | FEC+GBL+EMC+MB | |||||
LiPF6 | EC+EMC,EC+EMC+MA,EC+DMC+MA | 0~40 | 0.5~2 | 5 | [ | |
NaPF6 | PC+EC | -10~50 | 0.1~2 | 7 | [ | |
分子动力学 | LiPF6 | PC,EC+EMC+MA,EC+DMC+MA EC+EMC,EC+DMC,FEC,EC+FEC,PC+FEC | 10~40 | 0.5~2 | 15 | [ |
LiFSI | DMC,EMC,PC | 0~60 | 0.1~0.5 | |||
LiTFSI | MP,DMC,EC,GLN,MGLN,PC EC-DEC,DMC-MP,BC-DMC | 25~85 | 0.1~1(mol/L) | |||
LiPF6 | PC+DEC,PC | -10~80 | 1 | — | [ | |
蒙特卡洛模拟 | LiClO4 | γBL | 25 | 0~0.8 | — | [ |
NaClO4 | γBL |
表3
电解液电导率数学模型"
方法 | 溶质 | 溶剂 | 温度/℃ | 盐浓度/(mol/kg) | 平均相对误差/% | 引用文献 |
---|---|---|---|---|---|---|
半经验模型 | LiBF4 | EC+DMC,GBL+2-MeTHF,GBL+1,2-DME,PC | 25 | 0~1.5 | 1.5 | [ |
LiClO4 | GBL+2-MeTHF,GBL+1,2-DME,GBL,PC GBL+1,1-DME,GBL+THF,PC+AN | 0~1.6 | ||||
LiAsF6 | GBL+2-MeTHF,GBL+1,2-DME,PC GBL+THF,PC+AN | 0~1.3 | ||||
LiPF6 | DMC,PC,EC+DMC,EC+EMC,EMC,PC+DEC | 25~75 | 0.1~2.9 | 1.87 | [ | |
LiBF4 | PC+DEC,PC | -20~60 | 0.25~2.32 | |||
LiPF6 | PC+DEC,PC+EC,PC | -80~60 | 0~2 | — | [ | |
LiClO4 | PC+AN | -35~35 | 0~1.4 | |||
LiBOB | PC+DEC,PC+EC | -40~60 | 0~2.5 | |||
LiBF4 | PC+DEC,PC+EC,PC | -80~60 | 0.2~2.1 | |||
数理统计方法 | LiPF6 | PC+EC | 25 | 寻找最优电导率 | [ | |
LiBOB | PC+EC+DMC,PC+EC+DMC+EA PC+EC+DMC+EMC | -25,25 | ||||
LiBOB | EC-DEC | 25,50 | [ | |||
LiPF6 | EC+EMC+DEC+DMC+EA+MP+EP | -10~45 | [ | |||
LiPF6 | EC+EMC+DMC | -40~40 | [ |
1 | LOGAN E R, TONITA E M, GERING K L, et al. A critical evaluation of the advanced electrolyte model[J]. Journal of the Electrochemical Society, 2018, 165(14): A3350-A3359. |
2 | LI Q, CAO Z, WAHYUDI W, et al. Unraveling the new role of an ethylene carbonate solvation shell in rechargeable metal ion batteries[J]. ACS Energy Letters, 2020, 6(1): 69-78. |
3 | MING J, LI M, KUMAR P, et al. Redox species-based electrolytes for advanced rechargeable lithium-ion battery[J]. ACS Energy Letters, 2016, 1(3): 529-534. |
4 | EBELING W, MALCHOW H. Bifurcations in a bistable reaction-Diffusion system[J]. Annalen der Physik, 1979, 491(2): 121-134. |
5 | JUSTICE J C, JUSTICE M C, MICHELETTI C. Ion pairs as a theoretical limit case concept at high dilution for equilibrium and transport excess properties[J]. Pure and Applied Chemistry, 1981, 53(7): 1291-1299. |
6 | CAILLOL J M, LEVESQUE D, WEIS J J. Theoretical calculation of ionic solution properties[J]. The Journal of Chemical Physics, 1986, 85(11): 6645-6657. |
7 | DE DIEGO A, USOBIAGA A, FERNÁNDEZ L A, et al. Application of the electrical conductivity of concentrated electrolyte solutions to industrial process control and design: From experimental measurement towards prediction through modelling[J]. TrAC Trends in Analytical Chemistry, 2001, 20(2): 65-78. |
8 | KRUMGALZ B, BARTHEL J. Conductivity study of electrolyte solutions in dimethylformamide at various temperatures[J]. Zeitschrift Für Physikalische Chemie, 1984, 142: 167-178. |
9 | PETROWSKY M, FRECH R. Application of the compensated arrhenius formalism to self-diffusion: Implications for ionic conductivity and dielectric relaxation[J]. The Journal of Physical Chemistry B, 2010, 114(26): 8600-8605. |
10 | HAN H B, ZHOU S S, ZHANG D J, et al. Lithium bis(fluorosulfonyl)imide (LiFSI) as conducting salt for nonaqueous liquid electrolytes for lithium-ion batteries: Physicochemical and electrochemical properties[J]. Journal of Power Sources, 2011, 196(7): 3623-3632. |
11 | GU G Y, BOUVIER S, WU C, et al. 2-methoxyethyl (methyl) carbonate-based electrolytes for Li-ion batteries[J]. Electrochimica Acta, 2000, 45(19): 3127-3139. |
12 | STALLWORTH P E, FONTANELLA J J, WINTERSGILL M C, et al. NMR, DSC and high pressure electrical conductivity studies of liquid and hybrid electrolytes[J]. Journal of Power Sources, 1999, 81/82: 739-747. |
13 | GU G Y, LAURA R, ABRAHAM K M. Conductivity-temperature behavior of organic electrolytes[J]. Electrochemical and solid-state letters, 1999, 2(10): 486. |
14 | FONTANELLA J J, WINTERSGILL M C, IMMEL J J. Dynamics in propylene carbonate and propylene carbonate containing LiPF6[J]. The Journal of Chemical Physics, 1999, 110(11): 5392-5402. |
15 | STICKEL F, FISCHER E W, RICHERT R. Dynamics of glass-forming liquids. II. Detailed comparison of dielectric relaxation, dc-conductivity, and viscosity data[J]. The Journal of Chemical Physics, 1996, 104(5): 2043-2055. |
16 | MATSUDA Y, MORITA M, YAMASHITA T. Conductivity of the LiBF4/mixed ether electrolytes for secondary lithium cells[J]. Journal of the Electrochemical Society, 1984, 131: 2821-2827. |
17 | BARTHEL J, GORES H. Data on transport properties of electrolyte solutions for applied research and technology[J]. Pure and Applied Chemistry, 1985, 57: 1071-1082. |
18 | FUOSS R M. Review of the theory of electrolytic conductance[J]. Journal of Solution Chemistry, 1978, 7(10): 771-782. |
19 | DEBYE P, HUCKEL E. De la theorie des electrolytes. I. abaissement du point de congelation et phenomenes associes[J]. Physikalische Zeitschrift, 1923, 24(9): 185-206. |
20 | FUOSS R M, KRAUS C A. Properties of electrolytic solutions. IV. The conductance minimum and the formation of triple ions due to the action of coulomb forces1[J]. Journal of the American Chemical Society, 1933, 55(6): 2387-2399. |
21 | FUOSS R M, HSIA K L. Association of 1-1 salts in water[J]. Proceedings of the National Academy of Sciences of the United States of America, 1967, 57(6): 1550-1557. |
22 | FUOSS R M. Parametric analysis of conductance data[J]. Proceedings of the National Academy of Sciences of the United States of America, 1974, 71(11): 4491-4495. |
23 | FUOSS R M. Conductance-concentration function for associated symmetrical electrolytes. Supplementary comments[J]. The Journal of Physical Chemistry, 1976, 80: 2091-2093. |
24 | FUOSS R M. Paired ions: Dipolar pairs as subset of diffusion pairs[J]. Proceedings of the National Academy of Sciences of the United States of America, 1978, 75(1): 16-20. |
25 | QUINT J, VIALLARD A. The relaxation field for the general case of electrolyte mixtures[J]. Journal of Solution Chemistry, 1978, 7(3): 137-153. |
26 | QUINT J, VIALLARD A. The electrophoretic effect for the case of electrolyte mixtures[J]. Journal of Solution Chemistry, 1978, 7(7): 525-531. |
27 | FUOSS R M, ONSAGER L. Conductance of strong electrolytes at finite dilutions[J]. Proceedings of the National Academy of Sciences, 1955, 41(5): 274-283. |
28 | FUOSS R M, ONSAGER L. Conductance of unassociated electrolytes[J]. The Journal of Physical Chemistry, 1957, 61(5): 668-682. |
29 | FUOSS R M, ONSAGER L, SKINNER J F. The conductance of symmetrical electrolytes. V. the conductance Equation1, 2[J]. The Journal of Physical Chemistry, 1965, 69(8): 2581-2594. |
30 | CHANDRA A, BAGCHI B. Ion conductance in electrolyte solutions[J]. The Journal of Chemical Physics, 1999, 110(20): 10024-10034. |
31 | BERNARD O, KUNZ W, TURQ P, et al. Conductance in electrolyte solutions using the mean spherical approximation[J]. Journal of Physical Chemistry, 1992, 96(9): 3833-3840. |
32 | TURQ P, BLUM L, BERNARD O, et al. Conductance in associated electrolytes using the mean spherical approximation[J]. The Journal of physical chemistry, 1995, 99(2): 822-827. |
33 | 韩景立. 应用平均球近似理论计算锂盐有机溶液电导率[J]. 化工学报, 2004, 55(2): 268-270. |
HAN J L. Calculation of conductance for organic solutions of lithium salt using mean spherical approximation theory[J]. Journal of Chemical Industry and Engineering (China), 2004, 55(2): 268-270. | |
34 | EBELING W, ROSE J. Conductance theory of concentrated electrolytes in an MSA-type approximation[J]. Journal of Solution Chemistry, 1981, 10(9): 599-609. |
35 | BARTHEL, KRIENKE, HOLOVKO, et al. The application of the associative mean spherical approximation in the theory of nonaqueous electrolyte solutions[J]. Condensed Matter Physics, 2000, 3: 657. |
36 | WANG P M, ANDERKO A, YOUNG R. Modeling electrical conductivity in concentrated and mixed-solvent electrolyte solutions[J]. Industrial & Engineering Chemistry Research, 2004, 43: 8083-8092. |
37 | VARELA L M, CARRETE J, TURMINE M, et al. Pseudolattice theory of the surface tension of ionic liquid-water mixtures[J]. The Journal of Physical Chemistry B, 2009, 113(37): 12500-12505. |
38 | VARELA L M, GARCIA M, SARMIENTO F, et al. Pseudolattice theory of strong electrolyte solutions[J]. The Journal of Chemical Physics, 1997, 107(16): 6415-6419. |
39 | CHAGNES A, CARRÉ B, WILLMANN P, et al. Ion transport theory of nonaqueous electrolytes. LiClO4 in γ-butyrolactone: The quasi lattice approach[J]. Electrochimica Acta, 2001, 46(12): 1783-1791. |
40 | SELF J, FONG K D, PERSSON K A. Transport in superconcentrated LiPF6 and LiBF4/propylene carbonate electrolytes[J]. ACS Energy Letters, 2019, 4(12): 2843-2849. |
41 | 李以圭, 李春喜. 电解质溶液的分子热力学模型研究进展[J]. 化学进展, 1996(2): 155-161. |
42 | 杜燕萍, 刘斌, 侯海云, 等. 电解质溶液热力学模型的研究进展[J]. 当代化工, 2016, 45(11): 2632-2637. |
DU Y P, LIU B, HOU H Y, et al. Research progress in thermodynamic models of electrolyte solution[J]. Contemporary Chemical Industry, 2016, 45(11): 2632-2637. | |
43 | GERING K L. Prediction of electrolyte conductivity: Results from a generalized molecular model based on ion solvation and a chemical physics framework[J]. Electrochimica Acta, 2017, 225: 175-189. |
44 | DAVE A, GERING K L, MITCHELL J M, et al. Benchmarking conductivity predictions of the advanced electrolyte model (AEM) for aqueous systems[J]. Journal of The Electrochemical Society, 2019, 167(1): 013514. |
45 | LOGAN E R, TONITA E M, GERING K L, et al. A study of the physical properties of Li-ion battery electrolytes containing esters[J]. Journal of The Electrochemical Society, 2018, 165(2): A21. |
46 | CHAYAMBUKA K, CARDINAELS R, GERING K L, et al. An experimental and modeling study of sodium-ion battery electrolytes[J]. Journal of Power Sources, 2021, 516: doi: 10.1016/j.jpowsour.2021.230658. |
47 | PANG M C, MARINESCU M, WANG H Z, et al. Mechanical behaviour of inorganic solid-state batteries: Can we model the ionic mobility in the electrolyte with Nernst-Einstein's relation? [J]. Physical Chemistry Chemical Physics: PCCP, 2021, 23(48): 27159-27170. |
48 | BERNARD O, AUPIAIS J. Conductivity of weak electrolytes for buffer solutions: Modeling within the mean spherical approximation[J]. Journal of Molecular Liquids, 2018, 272: 631-637. |
49 | ALDER B J, WAINWRIGHT T E. Studies in molecular dynamics. I. general method[J]. The Journal of Chemical Physics, 1959, 31(2): 459-466. |
50 | ALDER B J, WAINWRIGHT T E. Studies in molecular dynamics. II. behavior of a small number of elastic spheres[J]. The Journal of Chemical Physics, 1960, 33(5): 1439-1451. |
51 | CHHIH A, TURQ P, BERNARD O, et al. Transport coefficients and apparent charges of concentrated electrolyte solutions-Equations for practical use[J]. Berichte der Bunsengesellschaft für physikalische Chemie, 1994, 98(12): 1516-1525. |
52 | BABA T, KAJITA S, SHIGA T, et al. Fast evaluation technique for the shear viscosity and ionic conductivity of electrolyte solutions[J]. Scientific Reports, 2022, 12: 7291. |
53 | KUBISIAK P, EILMES A. Estimates of electrical conductivity from molecular dynamics simulations: How to invest the computational effort[J]. The Journal of Physical Chemistry B, 2020, 124(43): 9680-9689. . |
54 | BORODIN O, SMITH G D. Quantum chemistry and molecular dynamics simulation study of dimethyl carbonate: Ethylene carbonate electrolytes doped with LiPF6[J]. The Journal of Physical Chemistry B, 2009, 113(6): 1763-1776. |
55 | CHAE Y, LIM C, JEON J, et al. Lithium-ion solvation structure in organic carbonate electrolytes at low temperatures[J]. The Journal of Physical Chemistry Letters, 2022, 13(33): 7881-7888. |
56 | OZAKI H, KURATANI K, SANO H, et al. A Monte-Carlo simulation of ionic conductivity and viscosity of highly concentrated electrolytes based on a pseudo-lattice model[J]. The Journal of Chemical Physics, 2017, 147(3): 034904. |
57 | HOLOVKO M. Concept of ion association in the theory of electrolyte solutions[C]//Ionic Soft Matter: Modern Trends in Theory and Applications, 2005: 45-81. |
58 | VALØEN L O, REIMERS J N. Transport properties of LiPF6-based Li-ion battery electrolytes[J]. Journal of The Electrochemical Society, 2005, 152(5): A882. |
59 | BARTHEL J, GERBER R, GORES H J. The temperature dependence of the properties of electrolyte solutions. VI. Triple ion formation in solvents of low permittivity exemplified by LiBF4 solutions in dimethoxyethane[J]. Berichte der Bunsengesellschaft für physikalische Chemie, 1984, 88(7): 616-622. |
60 | CASTEEL J F, AMIS E S. Conductance of sodium perchlorate in water-N-methylacetamide (NMA) solvent system[J]. Journal of Chemical & Engineering Data, 1974, 19(2): 121-128. |
61 | CASTEEL J, AMIS E S. Specific conductance of concentrated solutions of magnesium salts in water-ethanol system[J]. Journal of Chemical & Engineering Data, 1972, 17: 55-59. |
62 | WERBLAN L, BAŁKOWSKA A. Concentrated electrolyte solutions in organic solvents. Their specific conductance and analysis of Casteel—Amis equation[J]. Journal of Electroanalytical Chemistry, 1993, 354(1/2): 25-38. |
63 | DE DIEGO A, MADARIAGA J M, CHAPELA E. Empirical model of general application to fit (k, c, T) experimental data from concentrated aqueous electrolyte solutions[J]. Electrochimica Acta, 1997, 42(9): 1449-1456. |
64 | DING M S, XU K, JOW T R. Conductivity and viscosity of PC-DEC and PC-EC solutions of LiBOB[J]. Journal of The Electrochemical Society, 2004, 152(1): A132. |
65 | DING M. Casteel-Amis equation: Its extension from univariate to multivariate and its use as a two-parameter function[J]. Journal of Chemical & Engineering Data, 2004, 49: 1469-1474. |
66 | DING M. Electrolytic conductivity and glass transition temperature as functions of salt content, solvent composition, or temperature for LiPF6 in propylene carbonate + diethyl carbonate[J]. Journal of Chemical & Engineering Data, 2003, 49: 1102-1109. |
67 | ZHANG W T, CHEN X, WANG Y, et al. Experimental and modeling of conductivity for electrolyte solution systems[J]. ACS Omega, 2020, 5(35): 22465-22474. |
68 | LUNDGREN H, BEHM M, LINDBERGH G. Electrochemical characterization and temperature dependency of mass-transport properties of LiPF6 in EC: DEC[J]. Journal of the Electrochemical Society, 2014, 162(3): A413-A420. |
69 | YIM C H, ABU-LEBDEH Y. Connection between phase diagram, structure and ion transport in liquid, aqueous electrolyte solutions of lithium chloride[J]. Journal of The Electrochemical Society, 2018, 165(3): A547. |
70 | SCHWEIGER H G, MULTERER M, SCHWEIZER-BERBERICH M, et al. Finding conductivity optima of battery electrolytes by conductivity measurements guided by a simplex algorithm[J]. Journal of the Electrochemical Society, 2005, 152(3): A577. |
71 | HUANG J Y, YU B T, LI F S, et al. Forecasting conductivities of LiBOB-EC/DEC electrolytes by the mass triangle model[J]. International Journal of Minerals, Metallurgy and Materials, 2009, 16(4): 463-467. |
72 | XIAO L F, CAO Y L, AI X P, et al. Optimization of EC-based multi-solvent electrolytes for low temperature applications of lithium-ion batteries[J]. Electrochimica Acta, 2004, 49(27): 4857-4863. |
73 | DOUCEY L, REVAULT M, LAUTIÉ A, et al. A study of the Li/Li+ couple in DMC and PC solvents: Part 1: Characterization of LiAsF6/DMC and LiAsF6/PC solutions[J]. Electrochimica Acta, 1999, 44(14): 2371-2377. |
74 | 周思飞, 李骏, 张道明, 等. 基于数理统计方法的锂电池电解液电导率优化设计[J].储能科学与技术, 2022, 11(10): 3364-3370. |
ZHOU S F, LI J, ZHANG D M, et al. Optimization design of electrolyte conductivity of Lithium ion battery based on statistics method[J]. Energy Storage Science and Technology, 2022, 11(10): 3364-3370. |
[1] | 张斌伟, 魏子栋, 孙世刚. 室温钠硫电池硫化钠正极的发展现状与应用挑战[J]. 储能科学与技术, 2022, 11(9): 2811-2824. |
[2] | 武光华, 李宏胜, 李飞, 陈博, 张世科. 考虑时间相关性的电动汽车全生命周期碳排放量预测[J]. 储能科学与技术, 2022, 11(7): 2206-2212. |
[3] | 黄鹏, 聂枝根, 陈峥, 舒星, 沈世全, 杨继鹏, 申江卫. 基于优化Elman神经网络的锂电池容量预测[J]. 储能科学与技术, 2022, 11(7): 2282-2294. |
[4] | 易顺民, 谢林柏, 彭力. 基于VF-DW-DFN的锂离子电池剩余寿命预测[J]. 储能科学与技术, 2022, 11(7): 2305-2315. |
[5] | 李一涛, 沈凯尔, 庞全全. 有机物辅助的硫化物电解质基固态电池[J]. 储能科学与技术, 2022, 11(6): 1902-1918. |
[6] | 魏超超, 余创, 吴仲楷, 彭林峰, 程时杰, 谢佳. Li3PS4 固态电解质的研究进展[J]. 储能科学与技术, 2022, 11(5): 1368-1382. |
[7] | 张林森, 王士奇, 王利霞, 宋延华. PEO基Li+-g-C3N4 复合固态电解质的制备及其电化学性能[J]. 储能科学与技术, 2022, 11(11): 3463-3469. |
[8] | 廖敏会, 杨大祥, 周洋, 万仁杰, 刘瑞平, 王强. 玻璃纤维布基多层复合固态电解质的制备及其性能[J]. 储能科学与技术, 2022, 11(10): 3090-3099. |
[9] | 周思飞, 李骏, 张道明, 薛浩亮, 王小飞. 基于数理统计方法的锂电池电解液电导率优化设计[J]. 储能科学与技术, 2022, 11(10): 3364-3370. |
[10] | 史永胜, 李锦, 任嘉睿, 张凯. 基于WOA-XGBoost的锂离子电池剩余使用寿命预测[J]. 储能科学与技术, 2022, 11(10): 3354-3363. |
[11] | 许卓, 郑莉莉, 陈兵, 张涛, 常修亮, 韦守李, 戴作强. 固态电池复合电解质研究综述[J]. 储能科学与技术, 2021, 10(6): 2117-2126. |
[12] | 刘偲艳, 胡毕华. 氢燃料汽车双向DC-DC变换器改进模型预测控制[J]. 储能科学与技术, 2021, 10(6): 2046-2052. |
[13] | 苏月, 刘旭华, 曾芳磊, 任玉荣, 林本才. 聚偏氟乙烯/聚偏氟乙烯磺酸锂/锂盐复合固态电解质的制备及其性能[J]. 储能科学与技术, 2021, 10(6): 2069-2076. |
[14] | 孙乐平, 韩帅, 吴宛潞, 郭小璇. 基于经济模型预测控制的多虚拟电厂两阶段协调优化调度[J]. 储能科学与技术, 2021, 10(5): 1845-1853. |
[15] | 翟艳芳, 杨冠明, 侯望墅, 姚建尧, 温兆银, 宋树丰, 胡宁. 溶剂热法合成三维花瓣状石榴石型固态电解质及其在固态聚合物电解质中的应用[J]. 储能科学与技术, 2021, 10(3): 905-913. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||