Lithium (Li) metal is regarded as an ideal anode material for realizing next-generation high-energy-density batteries due to its high theoretical capacity and low electrochemical potential. However, numerous difficulties, such as large volume growth and uneven Li deposition, severely limit its practical implementation. The introduction of a three-dimensional composite Li anode is an essential approach for modulating Li plating/stripping. Furthermore, a high-energy-density Li metal pouch battery should rely on practical conditions, such as ultrathin Li metal anode (<50 µm), low negative/positive electrode areal capacity ratio (<3.0), and lean electrolyte (<3.0 g/Ah). This study outlines the behavior of Li plating/stripping under actual situations and concludes that the use of composite Li anodes is an effective solution to overcome the aforementioned difficulties. Furthermore, the research development of composite Li anode based on the material structure under realistic conditions is discussed. Currently, the prepared composite Li anode has also been gradually assessed under practical conditions, and has been used in pouch cells and achieved good performance. Host materials will invariably introduce new interfaces, and ion transport regulation at these interfaces should be explored. Li plating/stripping behaviors within the host should be regulated to limit the formation of Li dendrites in the internal space. The intrinsic property of lithiophilicity should be explored further.Furthermore, the effect of single host characteristics on plating/stripping behaviors should be studied using a deciphering approach to achieve logical host material design. Finally, the challenges and future research directions of composite Li anode are discussed to promote the development of high-energy-density Li metal batteries.
Fig. 2
(a) Failure mechanism map at varied currents and capacities. The color of samples in the transition zone indicates the occurrence ratio of polarization and short-circuit failure; (b) The photo and scanning electron microscope (SEM) images of electrode and separator after 10 cycles at10.0 mA/cm2/10.0 mAh/cm2[86]
Fig. 3
Diagram of the relationship between energy density and specific capacity of the composite lithium anode[88]. The calculation bases on the total mass of a battery. The capacity of the battery is 5 Ah, the area of the electrode is 28 cm2,the amount of the electrolyte is 2.3 g/Ah and the N/P ratio is 2
纳米结构的骨架材料主要为纳米碳材料,碳纳米管以及石墨烯等。这些碳材料具有质量轻、孔结构多、电化学性质较为稳定等优势[93-97]。这些特性保证了其不会对金属锂的高比容量特性产生严重的影响[98-101]。同时,纳米碳骨架材料的导电性、孔结构以及亲锂性均可以根据实际的要求而进行调控。清华大学张强课题组[102-103]发现具有超高比表面积的石墨烯(1666 m2/g)在设置电流密度为0.5 mA/cm2时可实现超低的电流密度4.0×10-5 mA/cm2,其在抑制锂枝晶生长方面表现出优异的特性。美国斯坦福大学崔屹团队[104]采用7%(质量分数)的层状石墨烯与金属锂复合,所构筑的复合锂负极比容量高达3390 mAh/g。该复合锂负极循环过程中表现出较低的体积膨胀(20%)和良好的机械柔韧性。该负极在3 mA/cm2循环时仍表现出了比较低的过电位(80 mV),匹配LiCoO2的全电池表现出良好的倍率性能。之后,其制备了超薄的金属锂石墨烯复合锂负极,与普通的金属锂箔相比,该复合锂负极表现出更好的循环性能和机械稳定性,可用于实用化条件下的软包电池[105]。中国科学院宁波材料所的刘兆平研究员[106]采用一种简单的热处理方法制备了金属锂石墨烯(Li@G)复合锂负极。该复合锂负极中LiC6骨架可以起到缓解死锂积累的作用,并且电池的电阻和极化等方面均有所改善。将该复合锂负极应用到实用化条件下的软包电池中,0.55 Ah的Li@G/NCM811电池可稳定循环140次。此外,其装配的容量为2.6 Ah、能量密度为356 Wh/kg的Li@G/NCM811软包电池100次循环后容量保持率为70%。浙江大学陆盈盈课题组[107]设计了一种含Mg x Li y 亲锂位点的三维石墨烯的复合锂负极。其通过透射电子显微镜观察锂的沉积过程,发现三维石墨烯中金属锂主要沉积在Mg x Li y 位点周围。该复合锂负极与NCM811(LiNi0.8Co0.1Mn0.1O2)正极装配能量密度大于350 Wh/kg软包电池时,电池在循环150次后仍具有较高的能量保持率(85%)。清华大学张强课题组[108-109]利用纳米碳材料设计了一种“三明治”结构的复合锂负极[图4(d)]。该复合锂负极由下层的铜集流体、中间层金属锂以及上层的纳米碳层组成。三明治结构上层的碳层消除了金属锂表面自身不均匀性的影响,辊压的方法也使得金属锂和集流体接触得更为紧密。将该结构的复合锂负极与硫正极相匹配,电池在4 mAh/cm2的循环容量下稳定循环了30次。
图4
(a) GO骨架材料设计与制备的示意图[104];(b) 从Li/C复合负极制备Li@G复合负极的结构演化示意图(左),大面积的Li@G复合锂负极(右)[106];(c) Mg x Li y /LiF-Li-rGO 复合负极中锂沉积和脱除行为示意图[107];(d) 三明治结构复合负极的照片及SEM图[108]
Fig. 4
(a) Schematic of the material design and the consequent synthetic procedures from a GO film (left) to a sparked rGO film (middle) to a layered Li-rGO composite film (right); (b) Illustration for the structural evolution from the Li/G composite to the Li@G anode(left),and large area of anode (right)[106]; (c) The graphical illustration of synthetic process and plating/strippng behavior of Mg x Li y /LiF-Li-rGO anode[107]; (d) Digital and SEM images of the sandwiched Li[108]
Fig. 5
(a) Preparation of Li/CF composite anode and the formation of LiC6 layers[115]; (b) Schematic diagram of the fabrication process of housed Li[116]; (c) Illustration of self-smoothing behaviour in the Li-C anode[117]; (d) Schematic illustration of the plating process in composite anode with a routine 3D host and a pressure self-adaptable host[118]
Fig. 6
(a) Lithium deposits on copper foil directly and through PMF[123]; (b) Electrokinetic phenomena in 3D PPS under an electric field and electrodiffusion of Li ions in traditional cells under an electric field, The green and orange balls represent cations and anions, respectively[125]; (c) Schematic illustration of the polar interaction between the polymer host and solvent molecules in a composite Li anode[126]
Fig. 7
(a) The summary diagram of the relation between the cycling performance and the conductivity of different hosts[132]; (b) The schematic illustration of the morphology of Li deposition in composite anodes with conductive and non-conductive host[132]; (c) The Li nucleation overpotential of Cu and CuZn at different cycles[133]; (d) Schematic diagram of failure mechanism and reactivation of lithiophilic sites[133]
CHENG X B, ZHANG R, ZHAO C Z, et al. Toward safe lithium metal anode in rechargeable batteries: A review[J]. Chemical Reviews, 2017, 117(15): 10403-10473.
EVARTS E C. Lithium batteries: To the limits of lithium[J]. Nature, 2015, 526(7575): S93-S95.
ZHANG X Q, ZHAO C Z, HUANG J Q, et al. Recent advances in energy chemical engineering of next-generation lithium batteries[J]. Engineering, 2018, 4(6): 831-847.
CHEN S R, DAI F, CAI M. Opportunities and challenges of high-energy lithium metal batteries for electric vehicle applications[J]. ACS Energy Letters, 2020, 5(10): 3140-3151.
WU F X, MAIER J, YU Y. Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries[J]. Chemical Society Reviews, 2020, 49(5): 1569-1614.
REN X D, ZOU L F, JIAO S H, et al. High-concentration ether electrolytes for stable high-voltage lithium metal batteries[J]. ACS Energy Letters, 2019, 4(4): 896-902.
ZHANG X Q, CHENG X B, CHEN X, et al. Fluoroethylene carbonate additives to render uniform Li deposits in lithium metal batteries[J]. Advanced Functional Materials, 2017, 27(10): doi: 10.1002/adfm.2016.05989.
CHEN S R, ZHENG J M, MEI D H, et al. High-voltage lithium-metal batteries enabled by localized high-concentration electrolytes[J]. Advanced Materials, 2018, 30(21): doi: 10.1002/adma.201706102.
LI M, WANG C S, CHEN Z W, et al. New concepts in electrolytes[J]. Chemical Reviews, 2020, 120(14): 6783-6819.
YANG S J, XU X Q, CHENG X B, et al. Columnar lithium metal deposits: The role of non-aqueous electrolyte additive[J]. Acta Physico Chimica Sinica, 2020: doi: 10.3866/PKU.WHXB202007058.
QI S H, LIU J D, HE J, et al. Structurally tunable characteristics of ionic liquids for optimizing lithium plating/stripping via electrolyte engineering[J]. Journal of Energy Chemistry, 2021, 63: 270-277.
QI S H, WANG H P, HE J, et al. Electrolytes enriched by potassium perfluorinated sulfonates for lithium metal batteries[J]. Science Bulletin, 2021, 66(7): 685-693.
XU R, XIAO Y, ZHANG R, et al. Dual-phase single-ion pathway interfaces for robust lithium metal in working batteries[J]. Advanced Materials, 2019, 31(19): doi: 10.1002/adma.201808392.
YAN C, CHENG X B, YAO Y X, et al. An armored mixed conductor interphase on a dendrite-free lithium-metal anode[J]. Advanced Materials, 2018, 30(45): doi: 10.1002/adma.201804461.
XU R, ZHANG X Q, CHENG X B, et al. Artificial soft-rigid protective layer for dendrite-free lithium metal anode[J]. Advanced Functional Materials, 2018, 28(8): doi: 10.1002/adfm.201705838.
LI N W, SHI Y, YIN Y X, et al. A flexible solid electrolyte interphase layer for long-life lithium metal anodes[J]. Angewandte Chemie International Edition, 2018, 57(6): 1505-1509.
ZHAO C Z, CHEN P Y, ZHANG R, et al. An ion redistributor for dendrite-free lithium metal anodes[J]. Science Advances, 2018, 4(11): eaat3446.
ZHAI P B, WANG T S, JIANG H N, et al. 3D artificial solid-electrolyte interphase for lithium metal anodes enabled by insulator-metal-insulator layered heterostructures[J]. Advanced Materials, 2021, 33(13): doi: 10.1002/adma.202006247.
YE S F, WANG L F, LIU F F, et al. G-C3N4 derivative artificial organic/inorganic composite solid electrolyte interphase layer for stable lithium metal anode[J]. Advanced Energy Materials, 2020, 10(44): doi: 10.1002/aenm.202002647.
YAO Y X, ZHANG X Q, LI B Q, et al. A compact inorganic layer for robust anode protection in lithium-sulfur batteries[J]. InfoMat, 2020, 2(2): 379-388.
DING J F, XU R, YAN C, et al. A review on the failure and regulation of solid electrolyte interphase in lithium batteries[J]. Journal of Energy Chemistry, 2021, 59: 306-319.
GAO J, SHAO Q J, CHEN J. Lithiated Nafion-garnet ceramic composite electrolyte membrane for solid-state lithium metal battery[J]. Journal of Energy Chemistry, 2020, 46: 237-247.
XU R, CHENG X B, YAN C, et al. Artificial interphases for highly stable lithium metal anode[J]. Matter, 2019, 1(2): 317-344.
SUN S, ZHAO C-Z, YUAN H, et al. Multiscale Understanding of High-Energy Cathodes in Solid-State Batteries: From Atomic Scale to Macroscopic Scale[J]. Materials Futures, 2022, 1(1): 012101.
HUANG W Z, YOSHINO K, HORI S, et al. Superionic lithium conductor with a cubic argyrodite-type structure in the Li-Al-Si-S system[J]. Journal of Solid State Chemistry, 2019, 270: 487-492.
HUANG W Z, CHENG L D, HORI S, et al. Ionic conduction mechanism of a lithium superionic argyrodite in the Li-Al-Si-S-O system[J]. Materials Advances, 2020, 1(3): 334-340.
HUANG W Z, MATSUI N, HORI S, et al. Anomalously high ionic conductivity of Li2 SiS 3-type conductors[J]. Journal of the American Chemical Society, 2022, 144(11): 4989-4994.
SHENG O W, ZHENG J H, JU Z J, et al. In situ construction of a LiF-enriched interface for stable all-solid-state batteries and its origin revealed by cryo-TEM[J]. Advanced Materials, 2020, 32(34): doi: 10.1002/adma.202000223.
SHENG O W, JIN C B, DING X F, et al. A decade of progress on solid-state electrolytes for secondary batteries: Advances and contributions[J]. Advanced Functional Materials, 2021, 31(27): doi: 10.1002/adfm.202100891.
ZHU G L, ZHAO C Z, YUAN H, et al. Liquid phase therapy with localized high-concentration electrolytes for solid-state Li metal pouch cells[J]. Acta Physico Chimica Sinica, 2020: doi: 10.3866/PKU.WHXB202005003.
HE K Q, CHENG S H S, HU J Y, et al. In-situ intermolecular interaction in composite polymer electrolyte for ultralong life quasi-solid-state lithium metal batteries[J]. Angewandte Chemie International Edition, 2021, 60(21): 12116-12123.
SHI K, WAN Z P, YANG L, et al. In Situ construction of an ultra-stable conductive composite interface for high-voltage all-solid-state lithium metal batteries[J]. Angewandte Chemie International Edition, 2020, 59(29): 11784-11788.
ZHU J X, LI X L, WU C W, et al. A multilayer ceramic electrolyte for all-solid-state Li batteries[J]. Angewandte Chemie International Edition, 2021, 60(7): 3781-3790.
GAO L, LUO S B, LI J X, et al. Core-shell structure nanofibers-ceramic nanowires based composite electrolytes with high Li transference number for high-performance all-solid-state lithium metal batteries[J]. Energy Storage Materials, 2021, 43: 266-274.
ZHANG S S, ZHAO H L. Electrode/electrolyte interfaces in Li7La3Zr2O12 garnet-based solid-state lithium metal battery: Challenges and progress[J]. Energy Storage Science and Technology, 2021, 10(3): 863-871.
LIU L, YIN Y X, LI J Y, et al. Uniform lithium nucleation/growth induced by lightweight nitrogen-doped graphitic carbon foams for high-performance lithium metal anodes[J]. Advanced Materials, 2018, 30(10): doi: 10.1002/adma.201706216.
SUN Z W, JIN S, JIN H C, et al. Robust expandable carbon nanotube scaffold for ultrahigh-capacity lithium-metal anodes[J]. Advanced Materials, 2018, 30(32): doi: 10.1002/adma.201800884.
WANG S H, YIN Y X, ZUO T T, et al. Stable Li metal anodes via regulating lithium plating/stripping in vertically aligned microchannels[J]. Advanced Materials, 2017, 29(40): doi: 10.1002/adma.201703729.
SONG Q, YAN H B, LIU K D, et al. Vertically grown edge-rich graphene nanosheets for spatial control of Li nucleation[J]. Advanced Energy Materials, 2018, 8(22): doi: 10.1002/aenm. 201800564.
CHI S S, LIU Y C, SONG W L, et al. Prestoring lithium into stable 3D nickel foam host as dendrite-free lithium metal anode[J]. Advanced Functional Materials, 2017, 27(24): doi: 10.1002/adfm. 201700348.
ZHAI P B, WEI Y, XIAO J, et al. In situ generation of artificial solid-electrolyte interphases on 3D conducting scaffolds for high-performance lithium-metal anodes[J]. Advanced Energy Materials, 2020, 10(8): doi: 10.1002/aenm.201903339.
MAO H, YU W, CAI Z Y, et al. Current-density regulating lithium metal directional deposition for long cycle-life Li metal batteries[J]. Angewandte Chemie International Edition, 2021, 60(35): 19306-19313.
YAO Z Y, JIA W S, WANG Z H, et al. Fast ion/electron conducting scaffold of Li-Zn dual-phase alloy enable uniform deposition of Li metal at high current densities[J]. Journal of Energy Chemistry, 2020, 51: 285-292.
ZHANG L, ZHENG H F, LIU B, et al. Homogeneous bottom-growth of lithium metal anode enabled by double-gradient lithiophilic skeleton[J]. Journal of Energy Chemistry, 2021, 57: 392-400.
BHARGAV A, HE J R, GUPTA A, et al. Lithium-sulfur batteries: Attaining the critical metrics[J]. Joule, 2020, 4(2): 285-291.
CHEN S R, NIU C J, LEE H, et al. Critical parameters for evaluating coin cells and pouch cells of rechargeable Li-metal batteries[J]. Joule, 2019, 3(4): 1094-1105.
LIU T, LI H J, YUE J M, et al. Ultralight electrolyte for high-energy lithium-sulfur pouch cells[J]. Angewandte Chemie International Edition, 2021, 60(32): 17547-17555.
SHI Y, WAN J, LIU G X, et al. Interfacial evolution of lithium dendrites and their solid electrolyte interphase shells of quasi-solid-state lithium-metal batteries[J]. Angewandte Chemie International Edition, 2020, 59(41): 18120-18125.
DING J F, XU R, YAN C, et al. Integrated lithium metal anode protected by composite solid electrolyte film enables stable quasi-solid-state lithium metal batteries[J]. Chinese Chemical Letters, 2020, 31(9): 2339-2342.
CHENG Y F, CHEN J B, CHEN Y M, et al. Lithium Host: Advanced architecture components for lithium metal anode[J]. Energy Storage Materials, 2021, 38: 276-298.
LIU Y Y, WANG X Y, XU X Y, et al. Research progresses on modified current collector for lithium metal anode[J]. Energy Storage Science and Technology, 2021, 10(4): 1261-1272.
ZHANG R, LI N W, CHENG X B, et al. Advanced micro/nanostructures for lithium metal anodes[J]. Advanced Science, 2017, 4(3): doi: 10.1002/advs.201600445.
SHI P, ZHANG X Q, SHEN X, et al. A review of composite lithium metal anode for practical applications[J]. Advanced Materials Technologies, 2020, 5(1): doi: 10.1002/admt.201900806.
JIN S, JIANG Y, JI H X, et al. Advanced 3D current collectors for lithium-based batteries[J]. Advanced Materials, 2018, 30(48): doi: 10.1002/adma.201802014.
ZHAO Y M, REN L X, WANG A X, et al. Composite anodes for lithium metal batteries[J]. Acta Physico Chimica Sinica, 2020: doi: 10.3866/PKU.WHXB202008090.
NIU C J, LEE H, CHEN S R, et al. High-energy lithium metal pouch cells with limited anode swelling and long stable cycles[J]. Nature Energy, 2019, 4(7): 551-559.
ZHANG C Y, WANG A X, ZHANG J H, et al. 2D materials for lithium/sodium metal anodes[J]. Advanced Energy Materials, 2018, 8(34): doi: 10.1002/aenm.201802833.
YANG H J, GUO C, NAVEED A, et al. Recent progress and perspective on lithium metal anode protection[J]. Energy Storage Materials, 2018, 14: 199-221.
CHOI J W, AURBACH D. Promise and reality of post-lithium-ion batteries with high energy densities[J]. Nature Reviews Materials, 2016, 1: 16013.
JIN C B, LIU T F, SHENG O W, et al. Rejuvenating dead lithium supply in lithium metal anodes by iodine redox[J]. Nature Energy, 2021, 6(4): 378-387.
WANG Q, WU K, WANG H C, et al. Lithiophilic 3D SnS2@Carbon fiber cloth for stable Li metal anode[J]. Acta Physico Chimica Sinica, 2020: doi: 10.3866/PKU.WHXB202007092.
DU Y, GAO X, LI S W, et al. Recent advances in metal-organic frameworks for lithium metal anode protection[J]. Chinese Chemical Letters, 2020, 31(3): 609-616.
WANG T R, ZHANG R Q, WU Y M, et al. Engineering a flexible and mechanically strong composite electrolyte for solid-state lithium batteries[J]. Journal of Energy Chemistry, 2020, 46: 187-190.
ZHANG Z, HUANG Y, GAO H, et al. MOF-derived multifunctional filler reinforced polymer electrolyte for solid-state lithium batteries[J]. Journal of Energy Chemistry, 2021, 60: 259-271.
MENG N, ZHU X G, LIAN F. Particles in composite polymer electrolyte for solid-state lithium batteries: A review[J]. Particuology, 2022, 60: 14-36.
YUAN H D, NAI J W, TIAN H, et al. An ultrastable lithium metal anode enabled by designed metal fluoride spansules[J]. Science Advances, 2020, 6(10): eaaz3112.
ZHAO C Z, DUAN H, HUANG J Q, et al. Designing solid-state interfaces on lithium-metal anodes: A review[J]. Science China Chemistry, 2019, 62(10): 1286-1299.
ZHAO C Z, YUAN H, LU Y, et al. Review on interfaces in solid-state lithium metal anodes[J]. Chemical Industry and Engineering Progress, 2021, 40(9): 4986-4997.
NIU C J, LIU D Y, LOCHALA J A, et al. Balancing interfacial reactions to achieve long cycle life in high-energy lithium metal batteries[J]. Nature Energy, 2021, 6(7): 723-732.
LIN Z K, QIAO Y X, WANG W, et al. Morphology prediction of lithium plating by finite element modeling and simulations based on non-linear kinetics[J]. CIESC Journal, 2020, 71(9): 4228-4237.
NAN H X, ZHAO C Z, YUAN H, et al. Recent advances in solid-state lithium metal batteries: The role of external pressure and internal stress[J]. CIESC Journal, 2021, 72(1): 61-70.
SHI P, CHENG X B, LI T, et al. Electrochemical diagram of an ultrathin lithium metal anode in pouch cells[J]. Advanced Materials, 2019, 31(37): doi: 10.1002/adma.201902785.
JIN C, SHENG O, CHEN M, et al. Armed lithium metal anodes with functional skeletons[J]. Materials Today Nano, 2021, 13: doi: 10.1016/j.mtnano.2020.100103.
SHI P, HOU L P, JIN C B, et al. A successive conversion-deintercalation delithiation mechanism for practical composite lithium anodes[J]. Journal of the American Chemical Society, 2022, 144(1): 212-218.
WANG S J, XIONG P, ZHANG J Q, et al. Recent progress on flexible lithium metal batteries: Composite lithium metal anodes and solid-state electrolytes[J]. Energy Storage Materials, 2020, 29: 310-331.
LI T, LIU H, SHI P, et al. Recent progress in carbon/lithium metal composite anode for safe lithium metal batteries[J]. Rare Metals, 2018, 37(6): 449-458.
ZHAN Y X, SHI P, ZHANG X Q, et al. Recent progress of lithiophilic host for lithium metal anode[J]. Chemical Journal of Chinese Universities, 2021, 42(5): 1569-1580.
LU Q Q, JIE Y L, MENG X Q, et al. Carbon materials for stable Li metal anodes: Challenges, solutions, and outlook[J]. Carbon Energy, 2021, 3(6): 957-975.
PATHAK R, CHEN K, WU F, et al. Advanced strategies for the development of porous carbon as a Li host/current collector for lithium metal batteries[J]. Energy Storage Materials, 2021, 41: 448-465.
LEE J, LEE T H, JANG H W, et al. Chemical modification of ordered/disordered carbon nanostructures for metal hosts and electrocatalysts of lithium-air batteries[J]. InfoMat, 2022, 4(1): e12268.
LUO G, HU X L, LIU W, et al. Freestanding polypyrrole nanotube/reduced graphene oxide hybrid film as flexible scaffold for dendrite-free lithium metal anodes[J]. Journal of Energy Chemistry, 2021, 58: 285-291.
LIU J, YUAN H, CHENG X B, et al. A review of naturally derived nanostructured materials for safe lithium metal batteries[J]. Materials Today Nano, 2019, 8: doi: 10.1016/j.mtnano.2019.100049.
KANG T, WANG Y L, GUO F, et al. Self-assembled monolayer enables slurry-coating of Li anode[J]. ACS Central Science, 2019, 5(3): 468-476.
BAI M H, XIE K Y, YUAN K, et al. A scalable approach to dendrite-free lithium anodes via spontaneous reduction of spray-coated graphene oxide layers[J]. Advanced Materials, 2018, 30(29): doi: 10.1002/adma.201801213.
JIN C B, SHI P, ZHANG X Q, et al. Advances in carbon materials for stable lithium metal batteries[J]. New Carbon Materials, 2022, 37(1): 1-24.
ZHANG R, CHENG X B, ZHAO C Z, et al. Conductive nanostructured scaffolds render low local current density to inhibit lithium dendrite growth[J]. Advanced Materials, 2016, 28(11): 2155-2162.
ZHANG R, CHEN X R, CHEN X, et al. Lithiophilic sites in doped graphene guide uniform lithium nucleation for dendrite-free lithium metal anodes[J]. Angewandte Chemie International Edition, 2017, 56(27): 7764-7768.
LIN D C, LIU Y Y, LIANG Z, et al. Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes[J]. Nature Nanotechnology, 2016, 11(7): 626-632.
CHEN H, YANG Y F, BOYLE D T, et al. Free-standing ultrathin lithium metal-graphene oxide host foils with controllable thickness for lithium batteries[J]. Nature Energy, 2021, 6(8): 790-798.
HE B Y, DENG W, HAN Q G, et al. Scalable fabrication of a large-area lithium/graphene anode towards a long-life 350 Whkg-1 lithium metal pouch cell[J]. Journal of Materials Chemistry A, 2021, 9(45): 25558-25566.
XU Q S, YANG X F, RAO M M, et al. High energy density lithium metal batteries enabled by a porous graphene/MgF2 framework[J]. Energy Storage Materials, 2020, 26: 73-82.
LI T, SHI P, ZHANG R, et al. Dendrite-free sandwiched ultrathin lithium metal anode with even lithium plating and stripping behavior[J]. Nano Research, 2019, 12(9): 2224-2229.
LIU H, LI T, XU X Q, et al. Stable interfaces constructed by concentrated ether electrolytes to render robust lithium metal batteries[J]. Chinese Journal of Chemical Engineering, 2021, 37: 152-158.
JIN C B, NAI J W, SHENG O W, et al. Biomass-based materials for green lithium secondary batteries[J]. Energy & Environmental Science, 2021, 14(3): 1326-1379.
JIN C B, SHENG O W, ZHANG W K, et al. Sustainable, inexpensive, naturally multi-functionalized biomass carbon for both Li metal anode and sulfur cathode[J]. Energy Storage Materials, 2018, 15: 218-225.
LIU J, YUAN H, TAO X Y, et al. Recent progress on biomass-derived ecomaterials toward advanced rechargeable lithium batteries[J]. EcoMat, 2020, 2(1): e12019.
LIU L, YIN Y X, LI J Y, et al. Free-standing hollow carbon fibers as high-capacity containers for stable lithium metal anodes[J]. Joule, 2017, 1(3): 563-575.
ZHANG Y, LUO W, WANG C W, et al. High-capacity, low-tortuosity, and channel-guided lithium metal anode[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(14): 3584-3589.
SHI P, LI T, ZHANG R, et al. Lithiophilic LiC6 layers on carbon hosts enabling stable Li metal anode in working batteries[J]. Advanced Materials, 2019, 31(8): doi: 10.1002/adma.201807131.
SHEN X, CHENG X B, SHI P, et al. Lithium-matrix composite anode protected by a solid electrolyte layer for stable lithium metal batteries[J]. Journal of Energy Chemistry, 2019, 37: 29-34.
NIU C J, PAN H L, XU W, et al. Self-smoothing anode for achieving high-energy lithium metal batteries under realistic conditions[J]. Nature Nanotechnology, 2019, 14(6): 594-601.
SHI P, ZHANG X Q, SHEN X, et al. A pressure self-adaptable route for uniform lithium plating and stripping in composite anode[J]. Advanced Functional Materials, 2021, 31(5): doi: 10.1002/adfm. 202004189.
LI N, WEI W F, XIE K Y, et al. Suppressing dendritic lithium formation using porous media in lithium metal-based batteries[J]. Nano Letters, 2018, 18(3): 2067-2073.
MATSUDA S, KUBO Y, UOSAKI K, et al. Insulative microfiber 3D matrix as a host material minimizing volume change of the anode of Li metal batteries[J]. ACS Energy Letters, 2017, 2(4): 924-929.
LIANG Z, ZHENG G Y, LIU C, et al. Polymer nanofiber-guided uniform lithium deposition for battery electrodes[J]. Nano Letters, 2015, 15(5): 2910-2916.
XU B Q, ZHAI H W, LIAO X B, et al. Porous insulating matrix for lithium metal anode with long cycling stability and high power[J]. Energy Storage Materials, 2019, 17: 31-37.
FAN L, ZHUANG H L, ZHANG W D, et al. Stable lithium electrodeposition at ultra-high current densities enabled by 3D PMF/Li composite anode[J]. Advanced Energy Materials, 2018, 8(15): doi: 10.1002/aenm.201703360.
ZHANG W D, ZHUANG H L, FAN L, et al. A “cation-anion regulation” synergistic anode host for dendrite-free lithium metal batteries[J]. Science Advances, 2018, 4(2): eaar4410.
LI G X, LIU Z, HUANG Q Q, et al. Stable metal battery anodes enabled by polyethylenimine sponge hosts by way of electrokinetic effects[J]. Nature Energy, 2018, 3(12): 1076-1083.
SHI P, LIU Z Y, ZHANG X Q, et al. Polar interaction of polymer host-solvent enables stable solid electrolyte interphase in composite lithium metal anodes[J]. Journal of Energy Chemistry, 2022, 64: 172-178.
ZHOU Y, HAN Y, ZHANG H T, et al. A carbon cloth-based lithium composite anode for high-performance lithium metal batteries[J]. Energy Storage Materials, 2018, 14: 222-229.
ZHOU X H, HUANG W J, SHI C G, et al. Enabling lithium-metal anode encapsulated in a 3D carbon skeleton with a superior rate performance and capacity retention in full cells[J]. ACS Applied Materials & Interfaces, 2018, 10(41): 35296-35305.
LIANG J H, DENG W, ZHOU X F, et al. High Li-ion conductivity artificial interface enabled by Li-grafted graphene oxide for stable Li metal pouch cell[J]. ACS Applied Materials & Interfaces, 2021, 13(25): 29500-29510.
HE B Y, DENG W, HAN Q G, et al. Scalable fabrication of a large-area lithium/graphene anode towards a long-life 350 Whkg-1 lithium metal pouch cell[J]. Journal of Materials Chemistry A, 2021, 9(45): 25558-25566.
ZHAN Y X, SHI P, ZHANG R, et al. Deciphering the effect of electrical conductivity of hosts on lithium deposition in composite lithium metal anodes[J]. Advanced Energy Materials, 2021, 11(37): doi: 10.1002/aenm.202101654.
ZHAN Y X, SHI P, MA X X, et al. Failure mechanism of lithiophilic sites in composite lithium metal anode under practical conditions[J]. Advanced Energy Materials, 2022, 12(2): doi: 10. 1002/aenm.202103291.
SHEN X, ZHANG R, CHEN X, et al. The failure of solid electrolyte interphase on Li metal anode: Structural uniformity or mechanical strength? [J]. Advanced Energy Materials, 2020, 10(10): doi: 10.1002/aenm.201903645.
SHEN X, ZHANG R, SHI P, et al. How does external pressure shape Li dendrites in Li metal batteries? [J]. Advanced Energy Materials, 2021, 11(10): doi: 10.1002/aenm.202003416.
... [86](a) Failure mechanism map at varied currents and capacities. The color of samples in the transition zone indicates the occurrence ratio of polarization and short-circuit failure; (b) The photo and scanning electron microscope (SEM) images of electrode and separator after 10 cycles at10.0 mA/cm2/10.0 mAh/cm2[86]Fig. 2
... [88].电池的容量为 5 Ah,极片面积为28 cm2,电解液的添加量为2.3 g/Ah,N/P为2Diagram of the relationship between energy density and specific capacity of the composite lithium anode[88]. The calculation bases on the total mass of a battery. The capacity of the battery is 5 Ah, the area of the electrode is 28 cm2,the amount of the electrolyte is 2.3 g/Ah and the N/P ratio is 2Fig. 3
... [88]. The calculation bases on the total mass of a battery. The capacity of the battery is 5 Ah, the area of the electrode is 28 cm2,the amount of the electrolyte is 2.3 g/Ah and the N/P ratio is 2Fig. 3
... 纳米结构的骨架材料主要为纳米碳材料,碳纳米管以及石墨烯等.这些碳材料具有质量轻、孔结构多、电化学性质较为稳定等优势[93-97].这些特性保证了其不会对金属锂的高比容量特性产生严重的影响[98-101].同时,纳米碳骨架材料的导电性、孔结构以及亲锂性均可以根据实际的要求而进行调控.清华大学张强课题组[102-103]发现具有超高比表面积的石墨烯(1666 m2/g)在设置电流密度为0.5 mA/cm2时可实现超低的电流密度4.0×10-5 mA/cm2,其在抑制锂枝晶生长方面表现出优异的特性.美国斯坦福大学崔屹团队[104]采用7%(质量分数)的层状石墨烯与金属锂复合,所构筑的复合锂负极比容量高达3390 mAh/g.该复合锂负极循环过程中表现出较低的体积膨胀(20%)和良好的机械柔韧性.该负极在3 mA/cm2循环时仍表现出了比较低的过电位(80 mV),匹配LiCoO2的全电池表现出良好的倍率性能.之后,其制备了超薄的金属锂石墨烯复合锂负极,与普通的金属锂箔相比,该复合锂负极表现出更好的循环性能和机械稳定性,可用于实用化条件下的软包电池[105].中国科学院宁波材料所的刘兆平研究员[106]采用一种简单的热处理方法制备了金属锂石墨烯(Li@G)复合锂负极.该复合锂负极中LiC6骨架可以起到缓解死锂积累的作用,并且电池的电阻和极化等方面均有所改善.将该复合锂负极应用到实用化条件下的软包电池中,0.55 Ah的Li@G/NCM811电池可稳定循环140次.此外,其装配的容量为2.6 Ah、能量密度为356 Wh/kg的Li@G/NCM811软包电池100次循环后容量保持率为70%.浙江大学陆盈盈课题组[107]设计了一种含Mg x Li y 亲锂位点的三维石墨烯的复合锂负极.其通过透射电子显微镜观察锂的沉积过程,发现三维石墨烯中金属锂主要沉积在Mg x Li y 位点周围.该复合锂负极与NCM811(LiNi0.8Co0.1Mn0.1O2)正极装配能量密度大于350 Wh/kg软包电池时,电池在循环150次后仍具有较高的能量保持率(85%).清华大学张强课题组[108-109]利用纳米碳材料设计了一种“三明治”结构的复合锂负极[图4(d)].该复合锂负极由下层的铜集流体、中间层金属锂以及上层的纳米碳层组成.三明治结构上层的碳层消除了金属锂表面自身不均匀性的影响,辊压的方法也使得金属锂和集流体接触得更为紧密.将该结构的复合锂负极与硫正极相匹配,电池在4 mAh/cm2的循环容量下稳定循环了30次. ...
0
0
0
1
... 纳米结构的骨架材料主要为纳米碳材料,碳纳米管以及石墨烯等.这些碳材料具有质量轻、孔结构多、电化学性质较为稳定等优势[93-97].这些特性保证了其不会对金属锂的高比容量特性产生严重的影响[98-101].同时,纳米碳骨架材料的导电性、孔结构以及亲锂性均可以根据实际的要求而进行调控.清华大学张强课题组[102-103]发现具有超高比表面积的石墨烯(1666 m2/g)在设置电流密度为0.5 mA/cm2时可实现超低的电流密度4.0×10-5 mA/cm2,其在抑制锂枝晶生长方面表现出优异的特性.美国斯坦福大学崔屹团队[104]采用7%(质量分数)的层状石墨烯与金属锂复合,所构筑的复合锂负极比容量高达3390 mAh/g.该复合锂负极循环过程中表现出较低的体积膨胀(20%)和良好的机械柔韧性.该负极在3 mA/cm2循环时仍表现出了比较低的过电位(80 mV),匹配LiCoO2的全电池表现出良好的倍率性能.之后,其制备了超薄的金属锂石墨烯复合锂负极,与普通的金属锂箔相比,该复合锂负极表现出更好的循环性能和机械稳定性,可用于实用化条件下的软包电池[105].中国科学院宁波材料所的刘兆平研究员[106]采用一种简单的热处理方法制备了金属锂石墨烯(Li@G)复合锂负极.该复合锂负极中LiC6骨架可以起到缓解死锂积累的作用,并且电池的电阻和极化等方面均有所改善.将该复合锂负极应用到实用化条件下的软包电池中,0.55 Ah的Li@G/NCM811电池可稳定循环140次.此外,其装配的容量为2.6 Ah、能量密度为356 Wh/kg的Li@G/NCM811软包电池100次循环后容量保持率为70%.浙江大学陆盈盈课题组[107]设计了一种含Mg x Li y 亲锂位点的三维石墨烯的复合锂负极.其通过透射电子显微镜观察锂的沉积过程,发现三维石墨烯中金属锂主要沉积在Mg x Li y 位点周围.该复合锂负极与NCM811(LiNi0.8Co0.1Mn0.1O2)正极装配能量密度大于350 Wh/kg软包电池时,电池在循环150次后仍具有较高的能量保持率(85%).清华大学张强课题组[108-109]利用纳米碳材料设计了一种“三明治”结构的复合锂负极[图4(d)].该复合锂负极由下层的铜集流体、中间层金属锂以及上层的纳米碳层组成.三明治结构上层的碳层消除了金属锂表面自身不均匀性的影响,辊压的方法也使得金属锂和集流体接触得更为紧密.将该结构的复合锂负极与硫正极相匹配,电池在4 mAh/cm2的循环容量下稳定循环了30次. ...
1
... 纳米结构的骨架材料主要为纳米碳材料,碳纳米管以及石墨烯等.这些碳材料具有质量轻、孔结构多、电化学性质较为稳定等优势[93-97].这些特性保证了其不会对金属锂的高比容量特性产生严重的影响[98-101].同时,纳米碳骨架材料的导电性、孔结构以及亲锂性均可以根据实际的要求而进行调控.清华大学张强课题组[102-103]发现具有超高比表面积的石墨烯(1666 m2/g)在设置电流密度为0.5 mA/cm2时可实现超低的电流密度4.0×10-5 mA/cm2,其在抑制锂枝晶生长方面表现出优异的特性.美国斯坦福大学崔屹团队[104]采用7%(质量分数)的层状石墨烯与金属锂复合,所构筑的复合锂负极比容量高达3390 mAh/g.该复合锂负极循环过程中表现出较低的体积膨胀(20%)和良好的机械柔韧性.该负极在3 mA/cm2循环时仍表现出了比较低的过电位(80 mV),匹配LiCoO2的全电池表现出良好的倍率性能.之后,其制备了超薄的金属锂石墨烯复合锂负极,与普通的金属锂箔相比,该复合锂负极表现出更好的循环性能和机械稳定性,可用于实用化条件下的软包电池[105].中国科学院宁波材料所的刘兆平研究员[106]采用一种简单的热处理方法制备了金属锂石墨烯(Li@G)复合锂负极.该复合锂负极中LiC6骨架可以起到缓解死锂积累的作用,并且电池的电阻和极化等方面均有所改善.将该复合锂负极应用到实用化条件下的软包电池中,0.55 Ah的Li@G/NCM811电池可稳定循环140次.此外,其装配的容量为2.6 Ah、能量密度为356 Wh/kg的Li@G/NCM811软包电池100次循环后容量保持率为70%.浙江大学陆盈盈课题组[107]设计了一种含Mg x Li y 亲锂位点的三维石墨烯的复合锂负极.其通过透射电子显微镜观察锂的沉积过程,发现三维石墨烯中金属锂主要沉积在Mg x Li y 位点周围.该复合锂负极与NCM811(LiNi0.8Co0.1Mn0.1O2)正极装配能量密度大于350 Wh/kg软包电池时,电池在循环150次后仍具有较高的能量保持率(85%).清华大学张强课题组[108-109]利用纳米碳材料设计了一种“三明治”结构的复合锂负极[图4(d)].该复合锂负极由下层的铜集流体、中间层金属锂以及上层的纳米碳层组成.三明治结构上层的碳层消除了金属锂表面自身不均匀性的影响,辊压的方法也使得金属锂和集流体接触得更为紧密.将该结构的复合锂负极与硫正极相匹配,电池在4 mAh/cm2的循环容量下稳定循环了30次. ...
0
0
1
... 纳米结构的骨架材料主要为纳米碳材料,碳纳米管以及石墨烯等.这些碳材料具有质量轻、孔结构多、电化学性质较为稳定等优势[93-97].这些特性保证了其不会对金属锂的高比容量特性产生严重的影响[98-101].同时,纳米碳骨架材料的导电性、孔结构以及亲锂性均可以根据实际的要求而进行调控.清华大学张强课题组[102-103]发现具有超高比表面积的石墨烯(1666 m2/g)在设置电流密度为0.5 mA/cm2时可实现超低的电流密度4.0×10-5 mA/cm2,其在抑制锂枝晶生长方面表现出优异的特性.美国斯坦福大学崔屹团队[104]采用7%(质量分数)的层状石墨烯与金属锂复合,所构筑的复合锂负极比容量高达3390 mAh/g.该复合锂负极循环过程中表现出较低的体积膨胀(20%)和良好的机械柔韧性.该负极在3 mA/cm2循环时仍表现出了比较低的过电位(80 mV),匹配LiCoO2的全电池表现出良好的倍率性能.之后,其制备了超薄的金属锂石墨烯复合锂负极,与普通的金属锂箔相比,该复合锂负极表现出更好的循环性能和机械稳定性,可用于实用化条件下的软包电池[105].中国科学院宁波材料所的刘兆平研究员[106]采用一种简单的热处理方法制备了金属锂石墨烯(Li@G)复合锂负极.该复合锂负极中LiC6骨架可以起到缓解死锂积累的作用,并且电池的电阻和极化等方面均有所改善.将该复合锂负极应用到实用化条件下的软包电池中,0.55 Ah的Li@G/NCM811电池可稳定循环140次.此外,其装配的容量为2.6 Ah、能量密度为356 Wh/kg的Li@G/NCM811软包电池100次循环后容量保持率为70%.浙江大学陆盈盈课题组[107]设计了一种含Mg x Li y 亲锂位点的三维石墨烯的复合锂负极.其通过透射电子显微镜观察锂的沉积过程,发现三维石墨烯中金属锂主要沉积在Mg x Li y 位点周围.该复合锂负极与NCM811(LiNi0.8Co0.1Mn0.1O2)正极装配能量密度大于350 Wh/kg软包电池时,电池在循环150次后仍具有较高的能量保持率(85%).清华大学张强课题组[108-109]利用纳米碳材料设计了一种“三明治”结构的复合锂负极[图4(d)].该复合锂负极由下层的铜集流体、中间层金属锂以及上层的纳米碳层组成.三明治结构上层的碳层消除了金属锂表面自身不均匀性的影响,辊压的方法也使得金属锂和集流体接触得更为紧密.将该结构的复合锂负极与硫正极相匹配,电池在4 mAh/cm2的循环容量下稳定循环了30次. ...
1
... 纳米结构的骨架材料主要为纳米碳材料,碳纳米管以及石墨烯等.这些碳材料具有质量轻、孔结构多、电化学性质较为稳定等优势[93-97].这些特性保证了其不会对金属锂的高比容量特性产生严重的影响[98-101].同时,纳米碳骨架材料的导电性、孔结构以及亲锂性均可以根据实际的要求而进行调控.清华大学张强课题组[102-103]发现具有超高比表面积的石墨烯(1666 m2/g)在设置电流密度为0.5 mA/cm2时可实现超低的电流密度4.0×10-5 mA/cm2,其在抑制锂枝晶生长方面表现出优异的特性.美国斯坦福大学崔屹团队[104]采用7%(质量分数)的层状石墨烯与金属锂复合,所构筑的复合锂负极比容量高达3390 mAh/g.该复合锂负极循环过程中表现出较低的体积膨胀(20%)和良好的机械柔韧性.该负极在3 mA/cm2循环时仍表现出了比较低的过电位(80 mV),匹配LiCoO2的全电池表现出良好的倍率性能.之后,其制备了超薄的金属锂石墨烯复合锂负极,与普通的金属锂箔相比,该复合锂负极表现出更好的循环性能和机械稳定性,可用于实用化条件下的软包电池[105].中国科学院宁波材料所的刘兆平研究员[106]采用一种简单的热处理方法制备了金属锂石墨烯(Li@G)复合锂负极.该复合锂负极中LiC6骨架可以起到缓解死锂积累的作用,并且电池的电阻和极化等方面均有所改善.将该复合锂负极应用到实用化条件下的软包电池中,0.55 Ah的Li@G/NCM811电池可稳定循环140次.此外,其装配的容量为2.6 Ah、能量密度为356 Wh/kg的Li@G/NCM811软包电池100次循环后容量保持率为70%.浙江大学陆盈盈课题组[107]设计了一种含Mg x Li y 亲锂位点的三维石墨烯的复合锂负极.其通过透射电子显微镜观察锂的沉积过程,发现三维石墨烯中金属锂主要沉积在Mg x Li y 位点周围.该复合锂负极与NCM811(LiNi0.8Co0.1Mn0.1O2)正极装配能量密度大于350 Wh/kg软包电池时,电池在循环150次后仍具有较高的能量保持率(85%).清华大学张强课题组[108-109]利用纳米碳材料设计了一种“三明治”结构的复合锂负极[图4(d)].该复合锂负极由下层的铜集流体、中间层金属锂以及上层的纳米碳层组成.三明治结构上层的碳层消除了金属锂表面自身不均匀性的影响,辊压的方法也使得金属锂和集流体接触得更为紧密.将该结构的复合锂负极与硫正极相匹配,电池在4 mAh/cm2的循环容量下稳定循环了30次. ...
1
... 纳米结构的骨架材料主要为纳米碳材料,碳纳米管以及石墨烯等.这些碳材料具有质量轻、孔结构多、电化学性质较为稳定等优势[93-97].这些特性保证了其不会对金属锂的高比容量特性产生严重的影响[98-101].同时,纳米碳骨架材料的导电性、孔结构以及亲锂性均可以根据实际的要求而进行调控.清华大学张强课题组[102-103]发现具有超高比表面积的石墨烯(1666 m2/g)在设置电流密度为0.5 mA/cm2时可实现超低的电流密度4.0×10-5 mA/cm2,其在抑制锂枝晶生长方面表现出优异的特性.美国斯坦福大学崔屹团队[104]采用7%(质量分数)的层状石墨烯与金属锂复合,所构筑的复合锂负极比容量高达3390 mAh/g.该复合锂负极循环过程中表现出较低的体积膨胀(20%)和良好的机械柔韧性.该负极在3 mA/cm2循环时仍表现出了比较低的过电位(80 mV),匹配LiCoO2的全电池表现出良好的倍率性能.之后,其制备了超薄的金属锂石墨烯复合锂负极,与普通的金属锂箔相比,该复合锂负极表现出更好的循环性能和机械稳定性,可用于实用化条件下的软包电池[105].中国科学院宁波材料所的刘兆平研究员[106]采用一种简单的热处理方法制备了金属锂石墨烯(Li@G)复合锂负极.该复合锂负极中LiC6骨架可以起到缓解死锂积累的作用,并且电池的电阻和极化等方面均有所改善.将该复合锂负极应用到实用化条件下的软包电池中,0.55 Ah的Li@G/NCM811电池可稳定循环140次.此外,其装配的容量为2.6 Ah、能量密度为356 Wh/kg的Li@G/NCM811软包电池100次循环后容量保持率为70%.浙江大学陆盈盈课题组[107]设计了一种含Mg x Li y 亲锂位点的三维石墨烯的复合锂负极.其通过透射电子显微镜观察锂的沉积过程,发现三维石墨烯中金属锂主要沉积在Mg x Li y 位点周围.该复合锂负极与NCM811(LiNi0.8Co0.1Mn0.1O2)正极装配能量密度大于350 Wh/kg软包电池时,电池在循环150次后仍具有较高的能量保持率(85%).清华大学张强课题组[108-109]利用纳米碳材料设计了一种“三明治”结构的复合锂负极[图4(d)].该复合锂负极由下层的铜集流体、中间层金属锂以及上层的纳米碳层组成.三明治结构上层的碳层消除了金属锂表面自身不均匀性的影响,辊压的方法也使得金属锂和集流体接触得更为紧密.将该结构的复合锂负极与硫正极相匹配,电池在4 mAh/cm2的循环容量下稳定循环了30次. ...
2
... 纳米结构的骨架材料主要为纳米碳材料,碳纳米管以及石墨烯等.这些碳材料具有质量轻、孔结构多、电化学性质较为稳定等优势[93-97].这些特性保证了其不会对金属锂的高比容量特性产生严重的影响[98-101].同时,纳米碳骨架材料的导电性、孔结构以及亲锂性均可以根据实际的要求而进行调控.清华大学张强课题组[102-103]发现具有超高比表面积的石墨烯(1666 m2/g)在设置电流密度为0.5 mA/cm2时可实现超低的电流密度4.0×10-5 mA/cm2,其在抑制锂枝晶生长方面表现出优异的特性.美国斯坦福大学崔屹团队[104]采用7%(质量分数)的层状石墨烯与金属锂复合,所构筑的复合锂负极比容量高达3390 mAh/g.该复合锂负极循环过程中表现出较低的体积膨胀(20%)和良好的机械柔韧性.该负极在3 mA/cm2循环时仍表现出了比较低的过电位(80 mV),匹配LiCoO2的全电池表现出良好的倍率性能.之后,其制备了超薄的金属锂石墨烯复合锂负极,与普通的金属锂箔相比,该复合锂负极表现出更好的循环性能和机械稳定性,可用于实用化条件下的软包电池[105].中国科学院宁波材料所的刘兆平研究员[106]采用一种简单的热处理方法制备了金属锂石墨烯(Li@G)复合锂负极.该复合锂负极中LiC6骨架可以起到缓解死锂积累的作用,并且电池的电阻和极化等方面均有所改善.将该复合锂负极应用到实用化条件下的软包电池中,0.55 Ah的Li@G/NCM811电池可稳定循环140次.此外,其装配的容量为2.6 Ah、能量密度为356 Wh/kg的Li@G/NCM811软包电池100次循环后容量保持率为70%.浙江大学陆盈盈课题组[107]设计了一种含Mg x Li y 亲锂位点的三维石墨烯的复合锂负极.其通过透射电子显微镜观察锂的沉积过程,发现三维石墨烯中金属锂主要沉积在Mg x Li y 位点周围.该复合锂负极与NCM811(LiNi0.8Co0.1Mn0.1O2)正极装配能量密度大于350 Wh/kg软包电池时,电池在循环150次后仍具有较高的能量保持率(85%).清华大学张强课题组[108-109]利用纳米碳材料设计了一种“三明治”结构的复合锂负极[图4(d)].该复合锂负极由下层的铜集流体、中间层金属锂以及上层的纳米碳层组成.三明治结构上层的碳层消除了金属锂表面自身不均匀性的影响,辊压的方法也使得金属锂和集流体接触得更为紧密.将该结构的复合锂负极与硫正极相匹配,电池在4 mAh/cm2的循环容量下稳定循环了30次. ...
... [104];(b) 从Li/C复合负极制备Li@G复合负极的结构演化示意图(左),大面积的Li@G复合锂负极(右)[106];(c) Mg x Li y /LiF-Li-rGO 复合负极中锂沉积和脱除行为示意图[107];(d) 三明治结构复合负极的照片及SEM图[108](a) Schematic of the material design and the consequent synthetic procedures from a GO film (left) to a sparked rGO film (middle) to a layered Li-rGO composite film (right); (b) Illustration for the structural evolution from the Li/G composite to the Li@G anode(left),and large area of anode (right)[106]; (c) The graphical illustration of synthetic process and plating/strippng behavior of Mg x Li y /LiF-Li-rGO anode[107]; (d) Digital and SEM images of the sandwiched Li[108]Fig. 4
... 纳米结构的骨架材料主要为纳米碳材料,碳纳米管以及石墨烯等.这些碳材料具有质量轻、孔结构多、电化学性质较为稳定等优势[93-97].这些特性保证了其不会对金属锂的高比容量特性产生严重的影响[98-101].同时,纳米碳骨架材料的导电性、孔结构以及亲锂性均可以根据实际的要求而进行调控.清华大学张强课题组[102-103]发现具有超高比表面积的石墨烯(1666 m2/g)在设置电流密度为0.5 mA/cm2时可实现超低的电流密度4.0×10-5 mA/cm2,其在抑制锂枝晶生长方面表现出优异的特性.美国斯坦福大学崔屹团队[104]采用7%(质量分数)的层状石墨烯与金属锂复合,所构筑的复合锂负极比容量高达3390 mAh/g.该复合锂负极循环过程中表现出较低的体积膨胀(20%)和良好的机械柔韧性.该负极在3 mA/cm2循环时仍表现出了比较低的过电位(80 mV),匹配LiCoO2的全电池表现出良好的倍率性能.之后,其制备了超薄的金属锂石墨烯复合锂负极,与普通的金属锂箔相比,该复合锂负极表现出更好的循环性能和机械稳定性,可用于实用化条件下的软包电池[105].中国科学院宁波材料所的刘兆平研究员[106]采用一种简单的热处理方法制备了金属锂石墨烯(Li@G)复合锂负极.该复合锂负极中LiC6骨架可以起到缓解死锂积累的作用,并且电池的电阻和极化等方面均有所改善.将该复合锂负极应用到实用化条件下的软包电池中,0.55 Ah的Li@G/NCM811电池可稳定循环140次.此外,其装配的容量为2.6 Ah、能量密度为356 Wh/kg的Li@G/NCM811软包电池100次循环后容量保持率为70%.浙江大学陆盈盈课题组[107]设计了一种含Mg x Li y 亲锂位点的三维石墨烯的复合锂负极.其通过透射电子显微镜观察锂的沉积过程,发现三维石墨烯中金属锂主要沉积在Mg x Li y 位点周围.该复合锂负极与NCM811(LiNi0.8Co0.1Mn0.1O2)正极装配能量密度大于350 Wh/kg软包电池时,电池在循环150次后仍具有较高的能量保持率(85%).清华大学张强课题组[108-109]利用纳米碳材料设计了一种“三明治”结构的复合锂负极[图4(d)].该复合锂负极由下层的铜集流体、中间层金属锂以及上层的纳米碳层组成.三明治结构上层的碳层消除了金属锂表面自身不均匀性的影响,辊压的方法也使得金属锂和集流体接触得更为紧密.将该结构的复合锂负极与硫正极相匹配,电池在4 mAh/cm2的循环容量下稳定循环了30次. ...
... Comparison of cycle performance with composite Li anodesTable 1
... 纳米结构的骨架材料主要为纳米碳材料,碳纳米管以及石墨烯等.这些碳材料具有质量轻、孔结构多、电化学性质较为稳定等优势[93-97].这些特性保证了其不会对金属锂的高比容量特性产生严重的影响[98-101].同时,纳米碳骨架材料的导电性、孔结构以及亲锂性均可以根据实际的要求而进行调控.清华大学张强课题组[102-103]发现具有超高比表面积的石墨烯(1666 m2/g)在设置电流密度为0.5 mA/cm2时可实现超低的电流密度4.0×10-5 mA/cm2,其在抑制锂枝晶生长方面表现出优异的特性.美国斯坦福大学崔屹团队[104]采用7%(质量分数)的层状石墨烯与金属锂复合,所构筑的复合锂负极比容量高达3390 mAh/g.该复合锂负极循环过程中表现出较低的体积膨胀(20%)和良好的机械柔韧性.该负极在3 mA/cm2循环时仍表现出了比较低的过电位(80 mV),匹配LiCoO2的全电池表现出良好的倍率性能.之后,其制备了超薄的金属锂石墨烯复合锂负极,与普通的金属锂箔相比,该复合锂负极表现出更好的循环性能和机械稳定性,可用于实用化条件下的软包电池[105].中国科学院宁波材料所的刘兆平研究员[106]采用一种简单的热处理方法制备了金属锂石墨烯(Li@G)复合锂负极.该复合锂负极中LiC6骨架可以起到缓解死锂积累的作用,并且电池的电阻和极化等方面均有所改善.将该复合锂负极应用到实用化条件下的软包电池中,0.55 Ah的Li@G/NCM811电池可稳定循环140次.此外,其装配的容量为2.6 Ah、能量密度为356 Wh/kg的Li@G/NCM811软包电池100次循环后容量保持率为70%.浙江大学陆盈盈课题组[107]设计了一种含Mg x Li y 亲锂位点的三维石墨烯的复合锂负极.其通过透射电子显微镜观察锂的沉积过程,发现三维石墨烯中金属锂主要沉积在Mg x Li y 位点周围.该复合锂负极与NCM811(LiNi0.8Co0.1Mn0.1O2)正极装配能量密度大于350 Wh/kg软包电池时,电池在循环150次后仍具有较高的能量保持率(85%).清华大学张强课题组[108-109]利用纳米碳材料设计了一种“三明治”结构的复合锂负极[图4(d)].该复合锂负极由下层的铜集流体、中间层金属锂以及上层的纳米碳层组成.三明治结构上层的碳层消除了金属锂表面自身不均匀性的影响,辊压的方法也使得金属锂和集流体接触得更为紧密.将该结构的复合锂负极与硫正极相匹配,电池在4 mAh/cm2的循环容量下稳定循环了30次. ...
... [106];(c) Mg x Li y /LiF-Li-rGO 复合负极中锂沉积和脱除行为示意图[107];(d) 三明治结构复合负极的照片及SEM图[108](a) Schematic of the material design and the consequent synthetic procedures from a GO film (left) to a sparked rGO film (middle) to a layered Li-rGO composite film (right); (b) Illustration for the structural evolution from the Li/G composite to the Li@G anode(left),and large area of anode (right)[106]; (c) The graphical illustration of synthetic process and plating/strippng behavior of Mg x Li y /LiF-Li-rGO anode[107]; (d) Digital and SEM images of the sandwiched Li[108]Fig. 4
... [106]; (c) The graphical illustration of synthetic process and plating/strippng behavior of Mg x Li y /LiF-Li-rGO anode[107]; (d) Digital and SEM images of the sandwiched Li[108]Fig. 4
... 纳米结构的骨架材料主要为纳米碳材料,碳纳米管以及石墨烯等.这些碳材料具有质量轻、孔结构多、电化学性质较为稳定等优势[93-97].这些特性保证了其不会对金属锂的高比容量特性产生严重的影响[98-101].同时,纳米碳骨架材料的导电性、孔结构以及亲锂性均可以根据实际的要求而进行调控.清华大学张强课题组[102-103]发现具有超高比表面积的石墨烯(1666 m2/g)在设置电流密度为0.5 mA/cm2时可实现超低的电流密度4.0×10-5 mA/cm2,其在抑制锂枝晶生长方面表现出优异的特性.美国斯坦福大学崔屹团队[104]采用7%(质量分数)的层状石墨烯与金属锂复合,所构筑的复合锂负极比容量高达3390 mAh/g.该复合锂负极循环过程中表现出较低的体积膨胀(20%)和良好的机械柔韧性.该负极在3 mA/cm2循环时仍表现出了比较低的过电位(80 mV),匹配LiCoO2的全电池表现出良好的倍率性能.之后,其制备了超薄的金属锂石墨烯复合锂负极,与普通的金属锂箔相比,该复合锂负极表现出更好的循环性能和机械稳定性,可用于实用化条件下的软包电池[105].中国科学院宁波材料所的刘兆平研究员[106]采用一种简单的热处理方法制备了金属锂石墨烯(Li@G)复合锂负极.该复合锂负极中LiC6骨架可以起到缓解死锂积累的作用,并且电池的电阻和极化等方面均有所改善.将该复合锂负极应用到实用化条件下的软包电池中,0.55 Ah的Li@G/NCM811电池可稳定循环140次.此外,其装配的容量为2.6 Ah、能量密度为356 Wh/kg的Li@G/NCM811软包电池100次循环后容量保持率为70%.浙江大学陆盈盈课题组[107]设计了一种含Mg x Li y 亲锂位点的三维石墨烯的复合锂负极.其通过透射电子显微镜观察锂的沉积过程,发现三维石墨烯中金属锂主要沉积在Mg x Li y 位点周围.该复合锂负极与NCM811(LiNi0.8Co0.1Mn0.1O2)正极装配能量密度大于350 Wh/kg软包电池时,电池在循环150次后仍具有较高的能量保持率(85%).清华大学张强课题组[108-109]利用纳米碳材料设计了一种“三明治”结构的复合锂负极[图4(d)].该复合锂负极由下层的铜集流体、中间层金属锂以及上层的纳米碳层组成.三明治结构上层的碳层消除了金属锂表面自身不均匀性的影响,辊压的方法也使得金属锂和集流体接触得更为紧密.将该结构的复合锂负极与硫正极相匹配,电池在4 mAh/cm2的循环容量下稳定循环了30次. ...
... [107];(d) 三明治结构复合负极的照片及SEM图[108](a) Schematic of the material design and the consequent synthetic procedures from a GO film (left) to a sparked rGO film (middle) to a layered Li-rGO composite film (right); (b) Illustration for the structural evolution from the Li/G composite to the Li@G anode(left),and large area of anode (right)[106]; (c) The graphical illustration of synthetic process and plating/strippng behavior of Mg x Li y /LiF-Li-rGO anode[107]; (d) Digital and SEM images of the sandwiched Li[108]Fig. 4
... 纳米结构的骨架材料主要为纳米碳材料,碳纳米管以及石墨烯等.这些碳材料具有质量轻、孔结构多、电化学性质较为稳定等优势[93-97].这些特性保证了其不会对金属锂的高比容量特性产生严重的影响[98-101].同时,纳米碳骨架材料的导电性、孔结构以及亲锂性均可以根据实际的要求而进行调控.清华大学张强课题组[102-103]发现具有超高比表面积的石墨烯(1666 m2/g)在设置电流密度为0.5 mA/cm2时可实现超低的电流密度4.0×10-5 mA/cm2,其在抑制锂枝晶生长方面表现出优异的特性.美国斯坦福大学崔屹团队[104]采用7%(质量分数)的层状石墨烯与金属锂复合,所构筑的复合锂负极比容量高达3390 mAh/g.该复合锂负极循环过程中表现出较低的体积膨胀(20%)和良好的机械柔韧性.该负极在3 mA/cm2循环时仍表现出了比较低的过电位(80 mV),匹配LiCoO2的全电池表现出良好的倍率性能.之后,其制备了超薄的金属锂石墨烯复合锂负极,与普通的金属锂箔相比,该复合锂负极表现出更好的循环性能和机械稳定性,可用于实用化条件下的软包电池[105].中国科学院宁波材料所的刘兆平研究员[106]采用一种简单的热处理方法制备了金属锂石墨烯(Li@G)复合锂负极.该复合锂负极中LiC6骨架可以起到缓解死锂积累的作用,并且电池的电阻和极化等方面均有所改善.将该复合锂负极应用到实用化条件下的软包电池中,0.55 Ah的Li@G/NCM811电池可稳定循环140次.此外,其装配的容量为2.6 Ah、能量密度为356 Wh/kg的Li@G/NCM811软包电池100次循环后容量保持率为70%.浙江大学陆盈盈课题组[107]设计了一种含Mg x Li y 亲锂位点的三维石墨烯的复合锂负极.其通过透射电子显微镜观察锂的沉积过程,发现三维石墨烯中金属锂主要沉积在Mg x Li y 位点周围.该复合锂负极与NCM811(LiNi0.8Co0.1Mn0.1O2)正极装配能量密度大于350 Wh/kg软包电池时,电池在循环150次后仍具有较高的能量保持率(85%).清华大学张强课题组[108-109]利用纳米碳材料设计了一种“三明治”结构的复合锂负极[图4(d)].该复合锂负极由下层的铜集流体、中间层金属锂以及上层的纳米碳层组成.三明治结构上层的碳层消除了金属锂表面自身不均匀性的影响,辊压的方法也使得金属锂和集流体接触得更为紧密.将该结构的复合锂负极与硫正极相匹配,电池在4 mAh/cm2的循环容量下稳定循环了30次. ...
... [108](a) Schematic of the material design and the consequent synthetic procedures from a GO film (left) to a sparked rGO film (middle) to a layered Li-rGO composite film (right); (b) Illustration for the structural evolution from the Li/G composite to the Li@G anode(left),and large area of anode (right)[106]; (c) The graphical illustration of synthetic process and plating/strippng behavior of Mg x Li y /LiF-Li-rGO anode[107]; (d) Digital and SEM images of the sandwiched Li[108]Fig. 4
... 纳米结构的骨架材料主要为纳米碳材料,碳纳米管以及石墨烯等.这些碳材料具有质量轻、孔结构多、电化学性质较为稳定等优势[93-97].这些特性保证了其不会对金属锂的高比容量特性产生严重的影响[98-101].同时,纳米碳骨架材料的导电性、孔结构以及亲锂性均可以根据实际的要求而进行调控.清华大学张强课题组[102-103]发现具有超高比表面积的石墨烯(1666 m2/g)在设置电流密度为0.5 mA/cm2时可实现超低的电流密度4.0×10-5 mA/cm2,其在抑制锂枝晶生长方面表现出优异的特性.美国斯坦福大学崔屹团队[104]采用7%(质量分数)的层状石墨烯与金属锂复合,所构筑的复合锂负极比容量高达3390 mAh/g.该复合锂负极循环过程中表现出较低的体积膨胀(20%)和良好的机械柔韧性.该负极在3 mA/cm2循环时仍表现出了比较低的过电位(80 mV),匹配LiCoO2的全电池表现出良好的倍率性能.之后,其制备了超薄的金属锂石墨烯复合锂负极,与普通的金属锂箔相比,该复合锂负极表现出更好的循环性能和机械稳定性,可用于实用化条件下的软包电池[105].中国科学院宁波材料所的刘兆平研究员[106]采用一种简单的热处理方法制备了金属锂石墨烯(Li@G)复合锂负极.该复合锂负极中LiC6骨架可以起到缓解死锂积累的作用,并且电池的电阻和极化等方面均有所改善.将该复合锂负极应用到实用化条件下的软包电池中,0.55 Ah的Li@G/NCM811电池可稳定循环140次.此外,其装配的容量为2.6 Ah、能量密度为356 Wh/kg的Li@G/NCM811软包电池100次循环后容量保持率为70%.浙江大学陆盈盈课题组[107]设计了一种含Mg x Li y 亲锂位点的三维石墨烯的复合锂负极.其通过透射电子显微镜观察锂的沉积过程,发现三维石墨烯中金属锂主要沉积在Mg x Li y 位点周围.该复合锂负极与NCM811(LiNi0.8Co0.1Mn0.1O2)正极装配能量密度大于350 Wh/kg软包电池时,电池在循环150次后仍具有较高的能量保持率(85%).清华大学张强课题组[108-109]利用纳米碳材料设计了一种“三明治”结构的复合锂负极[图4(d)].该复合锂负极由下层的铜集流体、中间层金属锂以及上层的纳米碳层组成.三明治结构上层的碳层消除了金属锂表面自身不均匀性的影响,辊压的方法也使得金属锂和集流体接触得更为紧密.将该结构的复合锂负极与硫正极相匹配,电池在4 mAh/cm2的循环容量下稳定循环了30次. ...
... [115];(b) 房屋结构状复合锂负极的制备过程示意图[116];(c) Li-C复合锂负极自光滑行为的示意图[117];(d) 金属锂在普通骨架以及具有自调节压力的骨架中沉积脱出行为的示意图[118](a) Preparation of Li/CF composite anode and the formation of LiC6 layers[115]; (b) Schematic diagram of the fabrication process of housed Li[116]; (c) Illustration of self-smoothing behaviour in the Li-C anode[117]; (d) Schematic illustration of the plating process in composite anode with a routine 3D host and a pressure self-adaptable host[118]Fig. 5
... [115]; (b) Schematic diagram of the fabrication process of housed Li[116]; (c) Illustration of self-smoothing behaviour in the Li-C anode[117]; (d) Schematic illustration of the plating process in composite anode with a routine 3D host and a pressure self-adaptable host[118]Fig. 5
... [116];(c) Li-C复合锂负极自光滑行为的示意图[117];(d) 金属锂在普通骨架以及具有自调节压力的骨架中沉积脱出行为的示意图[118](a) Preparation of Li/CF composite anode and the formation of LiC6 layers[115]; (b) Schematic diagram of the fabrication process of housed Li[116]; (c) Illustration of self-smoothing behaviour in the Li-C anode[117]; (d) Schematic illustration of the plating process in composite anode with a routine 3D host and a pressure self-adaptable host[118]Fig. 5
... [116]; (c) Illustration of self-smoothing behaviour in the Li-C anode[117]; (d) Schematic illustration of the plating process in composite anode with a routine 3D host and a pressure self-adaptable host[118]Fig. 5
(a) Preparation of Li/CF composite anode and the formation of LiC6 layers[115]; (b) Schematic diagram of the fabrication process of housed Li[116]; (c) Illustration of self-smoothing behaviour in the Li-C anode[117]; (d) Schematic illustration of the plating process in composite anode with a routine 3D host and a pressure self-adaptable host[118]Fig. 5
(a) Preparation of Li/CF composite anode and the formation of LiC6 layers[115]; (b) Schematic diagram of the fabrication process of housed Li[116]; (c) Illustration of self-smoothing behaviour in the Li-C anode[117]; (d) Schematic illustration of the plating process in composite anode with a routine 3D host and a pressure self-adaptable host[118]Fig. 5
... [123];(b)三维骨架PPS在电场下的电动效应以及电池中锂离子的电迁移行为,绿色和橘黄色的圆球分别表示阳离子和阴离子[125];(c)复合负极中骨架和溶剂分子之间相互作用的示意图[126](a) Lithium deposits on copper foil directly and through PMF[123]; (b) Electrokinetic phenomena in 3D PPS under an electric field and electrodiffusion of Li ions in traditional cells under an electric field, The green and orange balls represent cations and anions, respectively[125]; (c) Schematic illustration of the polar interaction between the polymer host and solvent molecules in a composite Li anode[126]Fig. 6
... [123]; (b) Electrokinetic phenomena in 3D PPS under an electric field and electrodiffusion of Li ions in traditional cells under an electric field, The green and orange balls represent cations and anions, respectively[125]; (c) Schematic illustration of the polar interaction between the polymer host and solvent molecules in a composite Li anode[126]Fig. 6
(a) Lithium deposits on copper foil directly and through PMF[123]; (b) Electrokinetic phenomena in 3D PPS under an electric field and electrodiffusion of Li ions in traditional cells under an electric field, The green and orange balls represent cations and anions, respectively[125]; (c) Schematic illustration of the polar interaction between the polymer host and solvent molecules in a composite Li anode[126]Fig. 6
(a) Lithium deposits on copper foil directly and through PMF[123]; (b) Electrokinetic phenomena in 3D PPS under an electric field and electrodiffusion of Li ions in traditional cells under an electric field, The green and orange balls represent cations and anions, respectively[125]; (c) Schematic illustration of the polar interaction between the polymer host and solvent molecules in a composite Li anode[126]Fig. 6
... [132];(b) 锂在导电与不导电骨架上沉积形貌的示意图[132];(c) 不同循环圈数下,Cu和CuZn的形核过电位及其之间的差值[133];(d) 亲锂位点失效机制及重新活化亲锂位点示意图[133](a) The summary diagram of the relation between the cycling performance and the conductivity of different hosts[132]; (b) The schematic illustration of the morphology of Li deposition in composite anodes with conductive and non-conductive host[132]; (c) The Li nucleation overpotential of Cu and CuZn at different cycles[133]; (d) Schematic diagram of failure mechanism and reactivation of lithiophilic sites[133]Fig. 7
... [132];(c) 不同循环圈数下,Cu和CuZn的形核过电位及其之间的差值[133];(d) 亲锂位点失效机制及重新活化亲锂位点示意图[133](a) The summary diagram of the relation between the cycling performance and the conductivity of different hosts[132]; (b) The schematic illustration of the morphology of Li deposition in composite anodes with conductive and non-conductive host[132]; (c) The Li nucleation overpotential of Cu and CuZn at different cycles[133]; (d) Schematic diagram of failure mechanism and reactivation of lithiophilic sites[133]Fig. 7
... [132]; (b) The schematic illustration of the morphology of Li deposition in composite anodes with conductive and non-conductive host[132]; (c) The Li nucleation overpotential of Cu and CuZn at different cycles[133]; (d) Schematic diagram of failure mechanism and reactivation of lithiophilic sites[133]Fig. 7
... [132]; (c) The Li nucleation overpotential of Cu and CuZn at different cycles[133]; (d) Schematic diagram of failure mechanism and reactivation of lithiophilic sites[133]Fig. 7
(a) The summary diagram of the relation between the cycling performance and the conductivity of different hosts[132]; (b) The schematic illustration of the morphology of Li deposition in composite anodes with conductive and non-conductive host[132]; (c) The Li nucleation overpotential of Cu and CuZn at different cycles[133]; (d) Schematic diagram of failure mechanism and reactivation of lithiophilic sites[133]Fig. 7
... [133](a) The summary diagram of the relation between the cycling performance and the conductivity of different hosts[132]; (b) The schematic illustration of the morphology of Li deposition in composite anodes with conductive and non-conductive host[132]; (c) The Li nucleation overpotential of Cu and CuZn at different cycles[133]; (d) Schematic diagram of failure mechanism and reactivation of lithiophilic sites[133]Fig. 7