Recent progress and outlook of thermal energy storage technologies
JIANG Zhu,1, ZOU Boyang1, CONG Lin1, XIE Chunping2, LI Chuan3, QIAO Geng4, ZHAO Yanqi5, NIE Binjian1, ZHANG Tongtong1, GE Zhiwei6, MA Hongkun1, JIN Yi7, LI Yongliang1, DING Yulong,1
1.Birmingham Centre for Energy Storage, University of Birmingham, Birmingham B15 2TT, UK
2.Grantham Research Institute on Climate Change and the Environment (GRI), London School of Economics and Political Science (LSE ), London WC2A 2AE, UK
3.MOE Key Laboratory of Enhanced Heat Transfer and Energy Conservation, Beijing University of Technology, Beijing 100124, China
4.Global Energy Interconnection Research Institute Europe GmbH, Berlin 10623, Germany
5.Institute of Intelligent Flexible Mechatronics, Jiangsu University, Zhenjiang 212013, Jiangsu, China
6.Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190, China
7.Jiangsu Jinhe Energy Technology Co. , Ltd. , Zhenjiang 212499, Jiangsu, China
Thermal energy storage (TES) plays an important role in addressing the intermittency issue of renewable energy and enhancing energy utilization efficiency. This study focuses on recent progress in TES materials, devices, systems, and government policies. In terms of the TES materials, the formulation of composite TES materials (e.g., phase change and thermochemical materials) to improve material performance, molecular-scale simulation of the material properties, and the associated fabrication technologies have been summarized. Corrosion challenges of TES materials in practical applications were reviewed, especially high-temperature molten salt corrosion. Heat transfer enhancement measures of the slab type, packed bed, and tube-and-shell TES heat exchangers were discussed for TES devices. Besides, TES systems based on latent heat storage and thermal management, thermochemical heat storage, and liquid air energy storage, have been introduced. Finally, government policies of different countries to facilitate TES technology deployment were reported.
Keywords:sensible heat storage
;
latent heat storage
;
thermochemical heat storage
;
liquid air energy storage
;
policies and economics
Fig. 2
Numbers of publications and patents over the past 20 years, and the proportions of different energy storage technologies (Scopus, key word is energy storage technology)
Fig. 12
Photographs of carbonate salt tested with (a) non-graphitized and (b) graphitized SS347 at 600 ℃ for 600 h. Photographs of (c) non-graphitized and (d) graphitized SS347 tested in the carbonate salt at 600 ℃ for 600 h
Fig. 15
Composite PCM modules for latent heat storage devices and the establishment of the dynamic correlations between the devices and the PCM modules
此外,全球大部分大型储热技术设施的装机主要来自北欧(尤其是丹麦、德国和瑞典)的区域供热系统。其中,太阳能区域供热(solar district heating,SDH)系统在欧洲供热部门的能源转型中发挥着重要作用。丹麦在太阳能区域供热系统的装机数量和容量上领先全球,70%以上的大型太阳能区域供热厂都在丹麦建造[184]。热井储热和钻孔储热是丹麦太阳能供热厂中最常见的两种跨季节地下储热技术。由于地下储热技术的大量使用,目前丹麦、德国和瑞典等欧盟国家的区域供热储能装机容量在全球占比超过60%。丹麦能源政策的特点是注重能源系统的整体规划,充分发挥可再生能源的税收政策和辅助政策框架之间的协同效应,如税收减免、上网电价补贴政策以及投资补助等,并通过热电联产以及广泛应用储热技术等多项措施极尽所能地利用当地的可再生能源、余热和废热[3]。
4.1.2 供冷
联合国政府间气候变化专门委员会(IPCC)预测全球的制冷需求将从2000年的300 TWh大幅增长至2100年的10000 TWh,约占到彼时全球电力总需求的一半[185]。储冷应用中,冰储冷已经成功商业化,而相变储冷大多还处于实验室规模的研究[186]。全球范围来看,储冷项目目前大部分位于美国,有少数一些大型项目位于气温较高的国家,如卡塔尔、约旦等。截至2017年,美国已部署了将近100 MW的冰储热系统,其中绝大部分位于纽约和宾夕法尼亚州[187]。美国对储能产业的支持政策具有覆盖面广和前瞻性布局的特点,例如,2020年12月美国能源部(DOE)发布的能源存储大挑战路线图(Energy Storage Grand Challenge Roadmap)[188],旨在创造和维持美国在储能领域的领导地位。2021年3月,美国能源部宣布将投资7500万美元建设一个国家级的储能技术研究与开发中心(Grid Storage Launchpad,GSL),研究方向将重点涉及储热和储电。除了国家层面的战略规划外,各州层面也制定了各类鼓励储能的政策,涵盖财税政策、市场环境及监管机制等多方面[189-190]。
Innovation outlook: Thermal energy storage[R]. International Renewable Energy Agency, 2020. https://www.irena.org/publications/2020/Nov/Innovation-outlook-Thermal-energy-storage
TAYLOR P G, BOLTON R, STONE D, et al. Developing pathways for energy storage in the UK using a coevolutionary framework[J]. Energy Policy, 2013, 63: 230-243.
GE Z W, LI Y L, LI D C, et al. Thermal energy storage: Challenges and the role of particle technology[J]. Particuology, 2014, 15: 2-8.http://dx.doi.org/10.1016/j.partic.2014.03.003
ZHENG H B, SONG C, BAO C, et al. Dark calcium carbonate particles for simultaneous full-spectrum solar thermal conversion and large-capacity thermochemical energy storage[J]. Solar Energy Materials and Solar Cells, 2020, 207: 110364.
JANZ G J, TRUONG G N. Melting and premelting properties of the potassium nitrate-sodium nitrite-sodium nitrate eutectic system[J]. Journal of Chemical & Engineering Data, 1983, 28(2): 201-202.
PENG Q, YANG X X, DING J, et al. Design of new molten salt thermal energy storage material for solar thermal power plant[J]. Applied Energy, 2013, 112: 682-689.http://www.sciencedirect.com/science/article/pii/S0306261912007672
DING W J, SHI H, JIANU A, et al. Molten chloride salts for next generation concentrated solar power plants: Mitigation strategies against corrosion of structural materials[J]. Solar Energy Materials and Solar Cells, 2019, 193: 298-313.
DING W J, GOMEZ-VIDAL J, BONK A, et al. Molten chloride salts for next generation CSP plants: Electrolytical salt purification for reducing corrosive impurity level[J]. Solar Energy Materials and Solar Cells, 2019, 199: 8-15.
WANG T, MANTHA D, REDDY R G. Thermal stability of the eutectic composition in LiNO3-NaNO3-KNO3 ternary system used for thermal energy storage[J]. Solar Energy Materials and Solar Cells, 2012, 100: 162-168.
TENG L, XUAN Y M, DA Y, et al. Modified Ca-Looping materials for directly capturing solar energy and high-temperature storage[J]. Energy Storage Materials, 2020, 25: 836-845.
SHARMA A, TYAGI V V, CHEN C R, et al. Review on thermal energy storage with phase change materials and applications[J]. Renewable and Sustainable Energy Reviews, 2009, 13(2): 318-345.
ORÓ E, DE GRACIA A, CASTELL A, et al. Review on phase change materials (PCMs) for cold thermal energy storage applications[J]. Applied Energy, 2012, 99: 513-533.
ZALBA B, MARı́N J M, CABEZA L F, et al. Review on thermal energy storage with phase change: Materials, heat transfer analysis and applications[J]. Applied Thermal Engineering, 2003, 23(3): 251-283.
GE Z W, YE F, LASFARGUES M, et al. Recent progress and prospective of medium and high temperatures thermal energy storage materials[J]. Energy Storage Science and Technology, 2012, 1(2): 89-102.
OLIVARES R I. The thermal stability of molten nitrite/nitrates salt for solar thermal energy storage in different atmospheres[J]. Solar Energy, 2012, 86(9): 2576-2583.
VEERAKUMAR C, SREEKUMAR A. Phase change material based cold thermal energy storage: Materials, techniques and applications - A review[J]. International Journal of Refrigeration, 2016, 67: 271-289.
ZHANG P, XIAO X, MA Z W. A review of the composite phase change materials: Fabrication, characterization, mathematical modeling and application to performance enhancement[J]. Applied Energy, 2016, 165: 472-510.https://www.sciencedirect.com/science/article/pii/S0306261915016165
MILIÁN Y E, GUTIÉRREZ A, GRÁGEDA M, et al. A review on encapsulation techniques for inorganic phase change materials and the influence on their thermophysical properties[J]. Renewable and Sustainable Energy Reviews, 2017, 73: 983-999.
YU C M, ZHANG X L, HUA W S. Research progress of sodium sulfate decahydrate phase change material[J]. Energy Storage Science and Technology, 2021, 10(3): 1016-1024.
LU W, TASSOU S A. Experimental study of the thermal characteristics of phase change slurries for active cooling[J]. Applied Energy, 2012, 91(1): 366-374.
EFIMOVA A, PINNAU S, MISCHKE M, et al. Development of salt hydrate eutectics as latent heat storage for air conditioning and cooling[J]. Thermochimica Acta, 2014, 575: 276-278.
刘欣. 十水硫酸钠相变蓄热材料的改性及其在模拟机房中的应用[D]. 广州: 华南理工大学, 2013.LIU X. Modification of sodium sulfate decahydrate phase change thermal storage materials and application in communication base station energy conservation[D]. Guangzhou: South China University of Technology, 2013.
SAEED R M, SCHLEGEL J P, CASTANO C, et al. Preparation and enhanced thermal performance of novel (solid to gel) form-stable eutectic PCM modified by nano-graphene platelets[J]. Journal of Energy Storage, 2018, 15: 91-102.
LIU Z X, YU Z, YANG T T, et al. A review on macro-encapsulated phase change material for building envelope applications[J]. Building and Environment, 2018, 144: 281-294.
PRAJAPATI D G, KANDASUBRAMANIAN B. A review on polymeric-based phase change material for thermo-regulating fabric application[J]. Polymer Reviews, 2020, 60(3): 389-419.
ALVA G, LIN Y X, LIU L K, et al. Synthesis, characterization and applications of microencapsulated phase change materials in thermal energy storage: A review[J]. Energy and Buildings, 2017, 144: 276-294.
SARI A, ALKAN C, DÖĞÜŞCÜ D K, et al. Micro/nano encapsulated n-tetracosane and n-octadecane eutectic mixture with polystyrene shell for low-temperature latent heat thermal energy storage applications[J]. Solar Energy, 2015, 115: 195-203.
FUKAHORI R, NOMURA T, ZHU C Y, et al. Macro-encapsulation of metallic phase change material using cylindrical-type ceramic containers for high-temperature thermal energy storage[J]. Applied Energy, 2016, 170: 324-328.
TAO Y B, HE Y L. A review of phase change material and performance enhancement method for latent heat storage system[J]. Renewable and Sustainable Energy Reviews, 2018, 93: 245-259.
LENG G H, QIAO G, JIANG Z, et al. Micro encapsulated & form-stable phase change materials for high temperature thermal energy storage[J]. Applied Energy, 2018, 217: 212-220.
LI C, LI Q, CONG L, et al. MgO based composite phase change materials for thermal energy storage: The effects of MgO particle density and size on microstructural characteristics as well as thermophysical and mechanical properties[J]. Applied Energy, 2019, 250: 81-91.https://www.sciencedirect.com/science/article/pii/S030626191930755X-aep-article-footnote-id1
AYDIN D, CASEY S P, RIFFAT S. The latest advancements on thermochemical heat storage systems[J]. Renewable and Sustainable Energy Reviews, 2014, 41: 356-367.
DONKERS P A J, SÖGÜTOGLU L C, HUININK H P, et al. A review of salt hydrates for seasonal heat storage in domestic applications[J]. Applied Energy, 2017, 199: 45-68.
LIU M, STEVEN TAY N H, BELL S, et al. Review on concentrating solar power plants and new developments in high temperature thermal energy storage technologies[J]. Renewable and Sustainable Energy Reviews, 2016, 53: 1411-1432.
PERMYAKOVA A, WANG S, COURBON E, et al. Design of salt-metal organic framework composites for seasonal heat storage applications[J]. Journal of materials chemistry A, 2017, 5(25): 12889-12898.
WEI S Y, HAN R, SU Y L, et al. Development of pomegranate-type CaCl2@C composites via a scalable one-pot pyrolysis strategy for solar-driven thermochemical heat storage[J]. Energy Conversion and Management, 2020, 212: 112694.
PALACIOS A, NAVARRO M E, BARRENECHE C, et al. Hybrid 3 in 1 thermal energy storage system - Outlook for a novel storage strategy[J]. Applied Energy, 2020, 274: 115024.
MAHON D, CLAUDIO G, EAMES P. A study of novel high performance and energy dense zeolite composite materials for domestic interseasonal thermochemical energy storage[J]. Energy Procedia, 2019, 158: 4489-4494.
ZHOU H, ZHANG D. Effect of graphene oxide aerogel on dehydration temperature of graphene oxide aerogel stabilized MgCl2⋅6H2O composites[J]. Solar Energy, 2019, 184: 202-208.
SÖGÜTOGLU L C, DONKERS P A J, FISCHER H R, et al. In-depth investigation of thermochemical performance in a heat battery: Cyclic analysis of K2CO3, MgCl2 and Na2S[J]. Applied Energy, 2018, 215: 159-173.
XU C, XIE Y Y, LIAO Z R, et al. Numerical study on the desorption process of a thermochemical reactor filled with MgCl2·6H2O for seasonal heat storage[J]. Applied Thermal Engineering, 2019, 146: 785-794.
RICHTER M, HABERMANN E M, SIEBECKE E, et al. A systematic screening of salt hydrates as materials for a thermochemical heat transformer[J]. Thermochimica Acta, 2018, 659: 136-150.
CALABRESE L, BRANCATO V, PALOMBA V, et al. Innovative composite sorbent for thermal energy storage based on a SrBr2·6H2O filled silicone composite foam[J]. Journal of Energy Storage, 2019, 26: 100954.
COURBON E, D'ANS P, PERMYAKOVA A, et al. A new composite sorbent based on SrBr2 and silica gel for solar energy storage application with high energy storage density and stability[J]. Applied Energy, 2017, 190: 1184-1194.
LI W, GUO H, ZENG M, et al. Performance of SrBr2·6H2O based seasonal thermochemical heat storage in a novel multilayered sieve reactor[J]. Energy Conversion and Management, 2019, 198: 111843.
GAEINI M, ROUWS A L, SALARI J W O, et al. Characterization of microencapsulated and impregnated porous host materials based on calcium chloride for thermochemical energy storage[J]. Applied Energy, 2018, 212: 1165-1177.
COURBON E, D'ANS P, PERMYAKOVA A, et al. Further improvement of the synthesis of silica gel and CaCl2 composites: Enhancement of energy storage density and stability over cycles for solar heat storage coupled with space heating applications[J]. Solar Energy, 2017, 157: 532-541.
ZHANG Y N, WANG R Z, LI T X. Thermochemical characterizations of high-stable activated alumina/LiCl composites with multistage sorption process for thermal storage[J]. Energy, 2018, 156: 240-249.
FRAZZICA A, BRANCATO V, CAPRÌ A, et al. Development of "salt in porous matrix" composites based on LiCl for sorption thermal energy storage[J]. Energy, 2020, 208: 118338.
GREKOVA A D, GORDEEVA L G, LU Z S, et al. Composite "LiCl/MWCNT" as advanced water sorbent for thermal energy storage: Sorption dynamics[J]. Solar Energy Materials and Solar Cells, 2018, 176: 273-279.
BRANCATO V, GORDEEVA L G, GREKOVA A D, et al. Water adsorption equilibrium and dynamics of LICL/MWCNT/PVA composite for adsorptive heat storage[J]. Solar Energy Materials and Solar Cells, 2019, 193: 133-140.
BRANCATO V, CALABRESE L, PALOMBA V, et al. MgSO4·7H2O filled macro cellular foams: An innovative composite sorbent for thermo-chemical energy storage applications for solar buildings[J]. Solar Energy, 2018, 173: 1278-1286.
FERCHAUD C J, SCHERPENBORG R A A, ZONDAG H A, et al. Thermochemical seasonal solar heat storage in salt hydrates for residential applications - Influence of the water vapor pressure on the desorption kinetics of MgSO4.7H2O[J]. Energy Procedia, 2014, 57: 2436-2440.
N'TSOUKPOE K E, SCHMIDT T, RAMMELBERG H U, et al. A systematic multi-step screening of numerous salt hydrates for low temperature thermochemical energy storage[J]. Applied Energy, 2014, 124: 1-16.
KELLY J T, WEXLER A S. Thermodynamics of carbonates and hydrates related to heterogeneous reactions involving mineral aerosol[J]. Journal of Geophysical Research: Atmospheres, 2005, 110(D11): D11201.
ZHANG Y N, WANG R Z, LI T X, et al. Thermochemical characterizations of novel vermiculite-LiCl composite sorbents for low-temperature heat storage[J]. Energies, 2016, 9(10): 854.
FOPAH-LELE A, TAMBA J G. A review on the use of SrBr2·6H2O as a potential material for low temperature energy storage systems and building applications[J]. Solar Energy Materials and Solar Cells, 2017, 164: 175-187.
D'ANS P, COURBON E, PERMYAKOVA A, et al. A new strontium bromide MOF composite with improved performance for solar energy storage application[J]. Journal of Energy Storage, 2019, 25: 100881.
XU J X, LI T X, CHAO J W, et al. High energy-density multi-form thermochemical energy storage based on multi-step sorption processes[J]. Energy, 2019, 185: 1131-1142.
KORHAMMER K, DRUSKE M M, FOPAH-LELE A, et al. Sorption and thermal characterization of composite materials based on chlorides for thermal energy storage[J]. Applied Energy, 2016, 162: 1462-1472.
BRANCATO V, GORDEEVA L G, SAPIENZA A, et al. Experimental characterization of the LiCl/vermiculite composite for sorption heat storage applications[J]. International Journal of Refrigeration, 2019, 105: 92-100.
ZHANG Y L, MIAO Q, JIA X, et al. Diatomite-based magnesium sulfate composites for thermochemical energy storage: Preparation and performance investigation[J]. Solar Energy, 2021, 224: 907-915.
MIAO Q, ZHANG Y L, JIA X, et al. MgSO4-expanded graphite composites for mass and heat transfer enhancement of thermochemical energy storage[J]. Solar Energy, 2021, 220: 432-439.
PALACIOS A, NAVARRO M E, BARRENECHE C, et al. Hybrid 3 in 1 thermal energy storage system—Outlook for a novel storage strategy[J]. Applied Energy, 2020, 274: 115024.
XU S Z, LEMINGTON, WANG R Z, et al. A zeolite 13X/magnesium sulfate-water sorption thermal energy storage device for domestic heating[J]. Energy Conversion and Management, 2018, 171: 98-109.
XU S Z, WANG R Z, WANG L W, et al. Performance characterizations and thermodynamic analysis of magnesium sulfate-impregnated zeolite 13X and activated alumina composite sorbents for thermal energy storage[J]. Energy, 2019, 167: 889-901.
ZHANG Y N, WANG R Z, ZHAO Y J, et al. Development and thermochemical characterizations of vermiculite/SrBr2 composite sorbents for low-temperature heat storage[J]. Energy, 2016, 115: 120-128.
RAO Z H, WANG S F, PENG F F. Self diffusion of the nano-encapsulated phase change materials: A molecular dynamics study[J]. Applied Energy, 2012, 100: 303-308.
RAO Z H, WANG S F, PENG F F. Molecular dynamics simulations of nano-encapsulated and nanoparticle-enhanced thermal energy storage phase change materials[J]. International Journal of Heat and Mass Transfer, 2013, 66: 575-584.
ZHANG X, WANG Y, XIA R, et al. Effect of chain configuration on thermal conductivity of polyethylene—A molecular dynamic simulation study[J]. Chinese Journal of Polymer Science, 2020, 38(12): 1418-1425.
LEE S L, SAIDUR R, SABRI M F M, et al. Effects of the particle size and temperature on the efficiency of nanofluids using molecular dynamic simulation[J]. Numerical Heat Transfer, Part A: Applications, 2016, 69(9): 996-1013.
LEE S L, SAIDUR R, SABRI M F M, et al. Molecular dynamic simulation on the thermal conductivity of nanofluids in aggregated and non-aggregated states[J]. Numerical Heat Transfer, Part A: Applications, 2015, 68(4): 432-453.
ZHANG M X, WANG C L, LUO A L, et al. Molecular dynamics simulation on thermophysics of paraffin/EVA/graphene nanocomposites as phase change materials[J]. Applied Thermal Engineering, 2020, 166: 114639.
SHIN D, TIZNOBAIK H, BANERJEE D. Specific heat mechanism of molten salt nanofluids[J]. Applied Physics Letters, 2014, 104(12): 121914. https://doi.org/10.1063/1.4868254
CHIERUZZI M, CERRITELLI G F, MILIOZZI A, et al. Heat capacity of nanofluids for solar energy storage produced by dispersing oxide nanoparticles in nitrate salt mixture directly at high temperature[J]. Solar Energy Materials and Solar Cells, 2017, 167: 60-69.
PÉREZ F J, ENCINAS-SÁNCHEZ V, GARCÍA-MARTÍN G, et al. Dynamic pilot plant facility for applications in CSP: Evaluation of corrosion resistance of A516 in a nitrate molten salt mixture Dip-coated ZrO2-Y2O3 coatings tested in molten salts for CSP applications[C]// AIP Conference Proceedings, 2017, 1200021(10). [2018-02-09]. https://doi.org/10.1063/1.4984503.
TIZNOBAIK H, BANERJEE D, SHIN D. Effect of formation of "long range" secondary dendritic nanostructures in molten salt nanofluids on the values of specific heat capacity[J]. International Journal of Heat and Mass Transfer, 2015, 91: 342-346.
RIZVI S M M, SHIN D. Mechanism of heat capacity enhancement in molten salt nanofluids[J]. International Journal of Heat and Mass Transfer, 2020, 161: 120260.
QIAO G, ALEXIADIS A, DING Y. Simulation study of anomalous thermal properties of molten nitrate salt[J/OL]. Powder Technology, 2017, 314: 660-664.http://linkinghub.elsevier.com/retrieve/pii/S0032591016307951
QIAO G, LASFARGUES M, ALEXIADIS A, et al. Simulation and experimental study of the specific heat capacity of molten salt based nanofluids[J]. Applied Thermal Engineering, 2017, 111: 1517-1522.http://dx.doi.org/10.1016/j.applthermaleng.2016.07.159.
ANAGNOSTOPOULOS A, ALEXIADIS A, DING Y. Molecular dynamics simulation of solar salt (NaNO3-KNO3) mixtures[J]. Solar Energy Materials and Solar Cells, 2019, 200: 109897.http://dx.doi.org/10.1016/j.solmat.2019.04.019.
CARRASCO J, ILLAS F, LOPEZ N. Dynamic ion pairs in the adsorption of isolated water molecules on alkaline-earth oxide (001) surfaces.[J]. Physical Review Letters, 2008, 100(1): 016101.http://europepmc.org/article/MED/18232787
XU M, HUAI X, CAI J. Agglomeration behavior of calcium hydroxide/calcium oxide as thermochemical heat storage material: A reactive molecular dynamics study[J]. Journal of Physical Chemistry C, 2017, 121(5): 3025-3033.https://pubs.acs.org/doi/abs/10.1021/acs.jpcc.6b08615
RINDT C C M, GAASTRA-NEDEA S V. Modeling thermochemical reactions in thermal energy storage systems[M]//Advances in Thermal Energy Storage Systems. Amsterdam: Elsevier, 2015: 375-415.
VELMURUGAN K, KUMARASAMY S, WONGWUTTANASATIAN T, et al. Review of PCM types and suggestions for an applicable cascaded PCM for passive PV module cooling under tropical climate conditions[J]. Journal of Cleaner Production, 2021, 293: 126065.
AGYENIM F, HEWITT N, EAMES P, et al. A review of materials, heat transfer and phase change problem formulation for latent heat thermal energy storage systems (LHTESS)[J]. Renewable and Sustainable Energy Reviews, 2010, 14(2): 615-628.
NORVELL C, SAILOR D J, DUSICKA P. The effect of microencapsulated phase-change material on the compressive strength of structural concrete[J]. Journal of Green Building, 2013, 8(3): 116-124.
SHIN D H, PARK J, CHOI S H, et al. A new type of heat storage system using the motion of phase change materials in an elliptical-shaped capsule[J]. Energy Conversion and Management, 2019, 182: 508-519.
NAVARRO M E, TRUJILLO A P, JIANG Z, et al. Manufacture of thermal energy storage materials[M]// DING Y L. Thermal energy storage: materials, devices, systems and applications// Energy and Environment Series. Royal Society of Chemistry, 2021.https://pubs.rsc.org/en/content/chapter/bk9781788017176-00121/978-1-78801-717-6
MORENO P, MIRÓ L, SOLÉ A, et al. Corrosion of metal and metal alloy containers in contact with phase change materials (PCM) for potential heating and cooling applications[J]. Applied Energy, 2014, 125: 238-245.http://dx.doi.org/10.1016/j.apenergy. 2014.03.022
XU G P, WANG K, DONG X P, et al. Review on corrosion resistance of mild steels in liquid aluminum[J]. Journal of Materials Science & Technology, 2021, 71: 12-22.
PALACIOS A, NAVARRO M E, JIANG Z, et al. High-temperature corrosion behaviour of metal alloys in commercial molten salts[J]. Solar Energy, 2020, 201: 437-452.
GARCÍA-MARTÍN G, LASANTA M I, ENCINAS-SÁNCHEZ V, et al. Evaluation of corrosion resistance of A516 Steel in a molten nitrate salt mixture using a pilot plant facility for application in CSP plants[J]. Solar Energy Materials and Solar Cells, 2017, 161: 226-231.
FARRELL A J, NORTON B, KENNEDY D M. Corrosive effects of salt hydrate phase change materials used with aluminium and copper[J]. Journal of Materials Processing Technology, 2006, 175(1/2/3): 198-205.https://www.sciencedirect.com/science/article/pii/S0924013605004176
徐桂芝, 胡晓, 金翼, 等. 高温相变储热换热装置仿真建模及分析[J]. 储能科学与技术, 2019, 8(2): 338-346.XU G Z, HU X, JIN Y, et al. Simulation modeling and analysis of a high temperature phase change heat storage and exchange device[J]. Energy Storage Science and Technology, 2019, 8(2): 338-346.https://kns.cnki.net/KCMS/detail/detail.aspx?filename=CNKX201902017&dbname=CJFD&dbcode=CJFQhttps://oversea.cnki.net/KCMS/detail/detail.aspx?filename=CNKX201902017&dbname=CJFD&dbcode=CJFQ
GROSU Y, ANAGNOSTOPOULOS A, NAVARRO M E, et al. Inhibiting hot corrosion of molten Li2CO3-Na2CO3-K2CO3 salt through graphitization of construction materials for concentrated solar power[J]. Solar Energy Materials and Solar Cells, 2020, 215: 110650.
GONZALEZ M, NITHIYANANTHAM U, CARBÓ-ARGIBAY E, et al. Graphitization as efficient inhibitor of the carbon steel corrosion by molten binary nitrate salt for thermal energy storage at concentrated solar power[J]. Solar Energy Materials and Solar Cells, 2019, 203: 110172.
ENCINAS-SÁNCHEZ V, BATUECAS E, MACÍAS-GARCÍA A, et al. Corrosion resistance of protective coatings against molten nitrate salts for thermal energy storage and their environmental impact in CSP technology[J]. Solar Energy, 2018, 176: 688-697.
SIDHU T S, PRAKASH S, AGRAWAL R D. Characterisations of HVOF sprayed NiCrBSi coatings on Ni-and Fe-based superalloys and evaluation of cyclic oxidation behaviour of some Ni-based superalloys in molten salt environment[J]. Thin Solid Films, 2006, 515(1): 95-105.
GROLL M, BROST O, HERH'E D. Corrosion of steels in contact with salt eutectics as latent heat storage materials: influence of water and other impurities[J]. Heal Recovery Systems & CHP, 1990, 10(4/5): 567-572.
GROSU Y, BONDARCHUK O, FAIK A. The effect of humidity, impurities and initial state on the corrosion of carbon and stainless steels in molten HitecXL salt for CSP application[J]. Solar Energy Materials and Solar Cells, 2018, 174: 34-41.
PEREIRA DA CUNHA J, EAMES P. Thermal energy storage for low and medium temperature applications using phase change materials - A review[J]. Applied Energy, 2016, 177: 227-238.
JEGADHEESWARAN S, POHEKAR S D. Performance enhancement in latent heat thermal storage system: A review[J]. Renewable and Sustainable Energy Reviews, 2009, 13(9): 2225-2244.
AL-ABIDI A A, BIN MAT S, SOPIAN K, et al. CFD applications for latent heat thermal energy storage: A review[J]. Renewable and Sustainable Energy Reviews, 2013, 20: 353-363.
JEGADHEESWARAN S, POHEKAR S D, KOUSKSOU T. Exergy based performance evaluation of latent heat thermal storage system: A review[J]. Renewable and Sustainable Energy Reviews, 2010, 14(9): 2580-2595.
ZHAO Y, WANG L, CHEN H S, et al. Analysis on thermal storage characteristic of sensible and latent heat in packed beds[J]. Journal of Engineering Thermophysics, 2012, 33(12): 2052-2057.
REGIN A F, SOLANKI S C, SAINI J S. Heat transfer characteristics of thermal energy storage system using PCM capsules: A review[J]. Renewable and Sustainable Energy Reviews, 2008, 12(9): 2438-2458.
KARTHIKEYAN S, VELRAJ R. Numerical investigation of packed bed storage unit filled with PCM encapsulated spherical containers - A comparison between various mathematical models[J]. International Journal of Thermal Sciences, 2012, 60: 153-160.
YANG L, ZHANG X S, XU G Y. Thermal performance of a solar storage packed bed using spherical capsules filled with PCM having different melting points[J]. Energy and Buildings, 2014, 68: 639-646.
JIN B, LI M J, XU Y, MA C, et al. Experimental study on the heat storage performance of double-layer filled bed heat storage[J].Journal of Xi'an Jiaotong University, 2018, 52(7): 80-86.
ZHAO B, LI C, JIN Y, et al. Heat transfer performance of thermal energy storage components containing composite phase change materials[J]. IET Renewable Power Generation, 2016, 10(10): 1515-1522.https://ietresearch.onlinelibrary.wiley.com/doi/full/10.1049/iet-rpg.2016.0026
JOHNSON M, VOGEL J, HEMPEL M, et al. Design of high temperature thermal energy storage for high power levels[J]. Sustainable Cities and Society, 2017, 35: 758-763.
JOHNSON M, HÜBNER S, BRAUN M, et al. Assembly and attachment methods for extended aluminum fins onto steel tubes for high temperature latent heat storage units[J]. Applied Thermal Engineering, 2018, 144: 96-105.
LAING D, BAUER T, BREIDENBACH N, et al. Development of high temperature phase-change-material storages[J]. Applied Energy, 2013, 109: 497-504.
PIZZOLATO A, SHARMA A, GE R H, et al. Maximization of performance in multi-tube latent heat storage—Optimization of fins topology, effect of materials selection and flow arrangements[J]. Energy, 2020, 203: 114797.
WANG P L, YAO H, LAN Z P, et al. Numerical investigation of PCM melting process in sleeve tube with internal fins[J]. Energy Conversion and Management, 2016, 110: 428-435.
PIZZOLATO A, SHARMA A, MAUTE K, et al. Design of effective fins for fast PCM melting and solidification in shell-and-tube latent heat thermal energy storage through topology optimization[J]. Applied Energy, 2017, 208: 210-227.
PIZZOLATO A, SHARMA A, MAUTE K, et al. Topology optimization for heat transfer enhancement in Latent Heat Thermal Energy Storage[J]. International Journal of Heat and Mass Transfer, 2017, 113: 875-888.
ELBAHJAOUI R, EL QARNIA H. Thermal performance of a solar latent heat storage unit using rectangular slabs of phase change material for domestic water heating purposes[J]. Energy and Buildings, 2019, 182: 111-130.
CAMPOS-CELADOR Á, DIARCE G, ZUBIAGA J T, et al. Design of a finned plate latent heat thermal energy storage system for domestic applications[J]. Energy Procedia, 2014, 48: 300-308.
LIU M, BELUSKO M, STEVEN TAY N H, et al. Impact of the heat transfer fluid in a flat plate phase change thermal storage unit for concentrated solar tower plants[J]. Solar Energy, 2014, 101: 220-231.
LIU M, BRUNO F, SAMAN W. Thermal performance analysis of a flat slab phase change thermal storage unit with liquid-based heat transfer fluid for cooling applications[J]. Solar Energy, 2011, 85(11): 3017-3027.
BECHIRI M, MANSOURI K. Exact solution of thermal energy storage system using PCM flat slabs configuration[J]. Energy Conversion and Management, 2013, 76: 588-598.
CHARVÁT P, KLIMEŠ L, OSTRÝ M. Numerical and experimental investigation of a PCM-based thermal storage unit for solar air systems[J]. Energy and Buildings, 2014, 68: 488-497.
SAEED R M, SCHLEGEL J P, SAWAFTA R, et al. Plate type heat exchanger for thermal energy storage and load shifting using phase change material[J]. Energy Conversion and Management, 2019, 181: 120-132.
GUO C X, ZHANG W J, WEI X L, et al. Numerical simulation for heat transfer problem in paraffin storage slab[J]. Energy Technology, 2006, 27(6): 243-248.
VAKILALTOJJAR S M. Phase change thermal storage system for space heating and cooling[D]. Adelaide: University of South Australia, 2000.https://xs.paodekuaiweixinqun.com/scholar?hl=zh-CN&as_sdt=0%2C5&q=Phase+change+thermal+storage+system+for+space+heating+and+cooling.+PhD+Thesis%2C+University+of+South+Australia%2C+2000.&btnG=
LI C, LI Q, DING Y L. Carbonate salt based composite phase change materials for medium and high temperature thermal energy storage: From component to device level performance through modelling[J]. Renewable Energy, 2019, 140: 140-151.
YE F, QU J L, ZHONG J Y, et al. Research advances in phase change materials for thermal energy storage[J]. The Chinese Journal of Process Engineering, 2010, 10(6): 1231-1241.
LI C, LI Q, LI Y L, et al. Heat transfer of composite phase change material modules containing a eutectic carbonate salt for medium and high temperature thermal energy storage applications[J]. Applied Energy, 2019, 238: 1074-1083.
GE Z W, YE F, DING Y L. Composite materials for thermal energy storage: Enhancing performance through microstructures[J]. ChemSusChem, 2014, 7(5): 1318-1325.https://chemistry-europe.onlinelibrary.wiley.com/doi/full/10.1002/cssc.201300878
Energy Use and Carbon Emissions of UK Telecoms Hold Steady [EB/OL]. [2022-07-13]. https://www.ispreview.co.uk/index.php/2020/05/energy-use-and-carbon-emissions-of-uk-telecoms-hold-steady.html
AYANG A, NGOHE-EKAM P S, VIDEME B, et al. Power consumption: Base stations of telecommunication in Sahel zone of Cameroon: Typology based on the power consumption—model and energy savings[J]. Journal of Energy, 2016, 2016: 3161060.
NADJAHI C, LOUAHLIA H, LEMASSON S. A review of thermal management and innovative cooling strategies for data center[J]. Sustainable Computing: Informatics and Systems, 2018, 19: 14-28.
ORÓ E, DEPOORTER V, PFLUGRADT N, et al. Overview of direct air free cooling and thermal energy storage potential energy savings in data centres[J]. Applied Thermal Engineering, 2015, 85: 100-110.
UK and China scientists develop world-first cold storage road/rail container[EB/OL]. [2021-09-21]. https://www.birmingham.ac.uk/news/latest/2018/12/scientists-develop-world-first-cold-storage-roadrail-container.aspx.
Passively cooled containers being delivered for integrated rail and road cold chain transportation following world's first commercial demonstration[EB/OL]. [2021-09-21]. https://www.birmingham.ac.uk/research/energy/news/2019/passively-cooled-containers-being-delivered-for-integrated-rail-and-road-cold-chain-transportation.aspx.
LIU M, SAMAN W, BRUNO F. Development of a novel refrigeration system for refrigerated trucks incorporating phase change material[J]. Applied Energy, 2012, 92: 336-342.
NIE B J, SHE X H, YU Q H, et al. Experimental study of charging a compact PCM energy storage device for transport application with dynamic exergy analysis[J]. Energy Conversion and Management, 2019, 196: 536-544.
NIE B J, SHE X H, DU Z, et al. System performance and economic assessment of a thermal energy storage based air-conditioning unit for transport applications[J]. Applied Energy, 2019, 251: 113254.
JANKOWSKI N R, MCCLUSKEY F P. A review of phase change materials for vehicle component thermal buffering[J]. Applied Energy, 2014, 113: 1525-1561.http://www.sciencedirect.com/science/article/pii/S0306261913006612
LEIMKUEHLER T, STEPHAN R, HANSEN S. Development, testing, and failure mechanisms of a replicative ice phase change material heat exchanger[C]// 40th International Conference on Environmental Systems. AIAA, 2010: 6138.
N'TSOUKPOE K E, LIU H, LE PIERRÈS N, et al. A review on long-term sorption solar energy storage[J]. Renewable and Sustainable Energy Reviews, 2009, 13(9): 2385-2396.
HONGOIS S, KUZNIK F, STEVENS P, et al. Development and characterisation of a new MgSO4-zeolite composite for long-term thermal energy storage[J]. Solar Energy Materials and Solar Cells, 2011, 95(7): 1831-1837.
AHMAD A, DING Y L. A thermochemical energy storage based cooling and heating system: Modelling, experimental validation and lab-scale demonstration[J]. Energy Conversion and Management, 2021, 247: 114748.https://linkinghub.elsevier.com/retrieve/pii/S0196890421009249
STITOU D, MAZET N, MAURAN S. Experimental investigation of a solid/gas thermochemical storage process for solar air-conditioning[J]. Energy, 2012, 41(1): 261-270.
AYDIN D, CASEY S P, CHEN X J, et al. Novel "open-sorption pipe" reactor for solar thermal energy storage[J]. Energy Conversion and Management, 2016, 121: 321-334.
LU Y Z, WANG R Z, ZHANG M, et al. Adsorption cold storage system with zeolite-water working pair used for locomotive air conditioning[J]. Energy Conversion and Management, 2003, 44(10): 1733-1743.
MAURAN S, LAHMIDI H, GOETZ V. Solar heating and cooling by a thermochemical process. First experiments of a prototype storing 60 kW·h by a solid/gas reaction[J]. Solar Energy, 2008, 82(7): 623-636.
SMITH E M. Storage of electrical energy using supercritical liquid air[J]. Proceedings of the Institution of Mechanical Engineers, 1977, 191(1): 289-298.
TANAKA T, ISHIKAWA A, AOYAMA K, et al. Gas turbine inlet air cooling system with liquid air[C]//Proceedings of ASME 1998 International Gas Turbine and Aeroengine Congress and Exhibition. ASME, 2014
ARAKI H, NAKABARU M, CHINO K. Simulation of heat transfer in the cool storage unit of a liquid-air energy storage system[J]. Heat Transfer—Asian Research, 2002, 31(4): 284-296.
Highview Power launches world's first grid-scale liquid air energy storage plant[EB/OL]. [2022-07-13]. https://www.renewableenergymagazine.com/energy_saving/highview-power-launches-worlda-s-first-gridscale-20180605/
Highview Power to develop multiple cryogenic energy storage facilities in the UK and to Build Europe's largest storage system[EB/OL]. [2022-07-13]. https://highviewpower.com/news_announcement/highview-power-to-develop-multiple-cryogenic-energy-storage-facilities-in-the-uk-and-to-build-europes-largest-storage-system/
SHE X H, ZHANG T T, MENG Y Y, et al. Cryogenic energy storage[M]// CABEZA L F. Encyclopedia of Energy Storage: volume 2. Elsevier, 2022: 94-107.
MORGAN R, NELMES S, GIBSON E, et al. An analysis of a large-scale liquid air energy storage system[J]. Proceedings of the Institution of Civil Engineers-Energy, 2015, 168(2): 135-144.
SHE X H, LI Y L, PENG X D, et al. Theoretical analysis on performance enhancement of stand-alone liquid air energy storage from perspective of energy storage and heat transfer[J]. Energy Procedia, 2017, 142: 3498-3504.
SCIACOVELLI A, VECCHI A, DING Y. Liquid air energy storage (LAES) with packed bed cold thermal storage-From component to system level performance through dynamic modelling[J]. Applied Energy, 2017, 190: 84-98.
SHE X H, PENG X D, NIE B J, et al. Enhancement of round trip efficiency of liquid air energy storage through effective utilization of heat of compression[J]. Applied Energy, 2017, 206: 1632-1642.
LEGRAND M, RODRÍGUEZ-ANTÓN L M, MARTINEZ-AREVALO C, et al. Integration of liquid air energy storage into the Spanish power grid[J]. Energy, 2019, 187: 115965.
TIAN Z Y, ZHANG S C, DENG J, et al. Large-scale solar district heating plants in Danish smart thermal grid: Developments and recent trends[J]. Energy Conversion and Management, 2019, 189: 67-80.
TAN P, LINDBERG P, EICHLER K, et al. Thermal energy storage using phase change materials: Techno-economic evaluation of a cold storage installation in an office building[J]. Applied Energy, 2020, 276: 115433.
DOE. Launches design & construction of $75 million grid energy storage research facility | Department of Energy[EB/OL]. [2021-08-31]. https://www.energy.gov/articles/doe-launches-design-construction-75-million-grid-energy-storage-research-facility.
JENSEN M V, FROM N, SORENSEN P A. Large scale solar thermal plants with long term heat storages. Examples from Marstal, Braedstrup and Dronninglund, DK [C]// Solar District Heating Conference. Toulouse. 2015
PLANENERGI J V. Seasonal pit heat storages-Guidelines for materials & construction[R]. International Energy Agency, 2020. 1-24. https://task55.iea-shc.org/Data/Sites/1/publications/IEA-SHC-T55-C-D.2-FACT-SHEET-Guidelines-seasonal-storages.pdf
JENSEN M V. Two approaches of seasonal heat storing: Pit heat storage and borehole thermal energy storage[C]. Solar District Heating Conference. Malmo. 2013.
SIBBITT B, MCCLENAHAN D. Seasonal Borehole Thermal Energy Storage-Guidelines for materials & construction[R]. International Energy Agency, 2015: 1-2. http://task45.iea-shc.org/data/sites/1/publications/IEA-SHC-T45.B.3.1-INFO-Seasonal%20storages-Borehole-Guidelines.pdf
Solares Wärmenetz mit Langzeitwärmespeicher und hohensolaren Deckungsanteilen für Wohngebiete und Quartiere [EB/OL] [2021-08-31]. https://www.solar-district-heating.eu/wp-content/uploads/2018/05/20150210_SolnetBWI_Anlagensteckbrief_Crailsheim.pdf l.
... 此外,全球大部分大型储热技术设施的装机主要来自北欧(尤其是丹麦、德国和瑞典)的区域供热系统.其中,太阳能区域供热(solar district heating,SDH)系统在欧洲供热部门的能源转型中发挥着重要作用.丹麦在太阳能区域供热系统的装机数量和容量上领先全球,70%以上的大型太阳能区域供热厂都在丹麦建造[184].热井储热和钻孔储热是丹麦太阳能供热厂中最常见的两种跨季节地下储热技术.由于地下储热技术的大量使用,目前丹麦、德国和瑞典等欧盟国家的区域供热储能装机容量在全球占比超过60%.丹麦能源政策的特点是注重能源系统的整体规划,充分发挥可再生能源的税收政策和辅助政策框架之间的协同效应,如税收减免、上网电价补贴政策以及投资补助等,并通过热电联产以及广泛应用储热技术等多项措施极尽所能地利用当地的可再生能源、余热和废热[3]. ...
... [109-110]Photographs of carbonate salt tested with (a) non-graphitized and (b) graphitized SS347 at 600 ℃ for 600 h. Photographs of (c) non-graphitized and (d) graphitized SS347 tested in the carbonate salt at 600 ℃ for 600 hFig. 122 储热装置的拟和传热强化2.1 相变传热过程和数值求解方法
... -110]Photographs of carbonate salt tested with (a) non-graphitized and (b) graphitized SS347 at 600 ℃ for 600 h. Photographs of (c) non-graphitized and (d) graphitized SS347 tested in the carbonate salt at 600 ℃ for 600 hFig. 122 储热装置的拟和传热强化2.1 相变传热过程和数值求解方法
... 此外,全球大部分大型储热技术设施的装机主要来自北欧(尤其是丹麦、德国和瑞典)的区域供热系统.其中,太阳能区域供热(solar district heating,SDH)系统在欧洲供热部门的能源转型中发挥着重要作用.丹麦在太阳能区域供热系统的装机数量和容量上领先全球,70%以上的大型太阳能区域供热厂都在丹麦建造[184].热井储热和钻孔储热是丹麦太阳能供热厂中最常见的两种跨季节地下储热技术.由于地下储热技术的大量使用,目前丹麦、德国和瑞典等欧盟国家的区域供热储能装机容量在全球占比超过60%.丹麦能源政策的特点是注重能源系统的整体规划,充分发挥可再生能源的税收政策和辅助政策框架之间的协同效应,如税收减免、上网电价补贴政策以及投资补助等,并通过热电联产以及广泛应用储热技术等多项措施极尽所能地利用当地的可再生能源、余热和废热[3]. ...