Due to its high capacity, low cost, and environmental safety, layered oxide O3-NaNi1/3Mn1/3Fe1/3O2 is one of the most promising cathode medium recently. However, its complicated phase transitions during the charge-discharge process lead to inferior electrochemical properties. In this study, we report a synergetic modification method to simultaneously increase the rate capacity and cycling stability of the O3-NaNi1/3Mn1/3Fe1/3O2 cathode medium by utilizing B2O3-coating and B3+ doping. The B2O3-coated NaNi1/3Fe1/3Mn1/3O2 cathode was prepared using the ball milling method. Materials with different B2O3 contents were prepared and characterized using X-ray diffractometer, scanning electron microscope, transmission electron microscopy, and electrochemical examinations. The best performing compound was obtained when 2% B2O3 coating was utilized. B2O3 was uniformly distributed between NaNi1/3Fe1/3Mn1/3O2 particles, and the preparation process did not change the crystal structure of NaNi1/3Fe1/3Mn1/3O2. Furthermore, the charge-discharge curves indicated that the capacity retention of 2% B2O3-coated samples was enhanced from 78% to 87% after 200 cycles. B2O3-coated NaNi1/3Mn1/3Fe1/3O2 also exhibited remarkable rate capability (99 mAh/g at a high rate of 10 C, compared to 75 mAh/g for the pristine). These results indicated that the proposed approach is an effective and reliable surface modification strategy for reinforcing the electrochemical properties of layered oxide materials for sodium-ion batteries.
GUO Kaiqiang. Preparation and characterization of B2O3-coated NaNi1/3Fe1/3Mn1/3O2 cathode materials for sodium-ion batteries[J]. Energy Storage Science and Technology, 2022, 11(9): 2980-2988
通过XRD对空白NFM和NFM@B2O3正极材料的结晶度、相纯度进行了检测。从图3(a)可以看到,NFM和NFM@B2O3的XRD衍射曲线基本一致,可以归属于典型的层状六边形α-NaFeO2结构(R-3m空间群)。衍射峰型尖锐且没有明显的杂质相,说明样品结晶度均良好且为纯的O3相。此外,从图3(b)可以看出,随着B2O3包覆量的增加,(003)峰向左发生了偏移,这表明少量B3+掺杂到晶格中,B3+掺杂会导致晶格常数增加[21-22]。因此,通过XRD的Rietveld精修对空白NFM和NFM@2%B2O3正极材料的晶格参数进行分析。从图3(c)、(d)中可以看出,计算得到的衍射图谱与观测到的衍射图谱吻合较好,可靠性系数RP和RWP的值较低,表明精修后的结果在误差范围内。如表1所示,与空白NFM相比,改性后的材料晶格参数a减小,参数c和晶胞体积V增大,表明部分B3+掺杂到了晶格内,导致晶格参数的变化。随着B掺杂量的增加在掺B的LiNi1-x-y Co x Mn y O2和LiNi1-x-y Co x Al y O2正极材料[23-24]中也观察到了晶格参数和晶胞体积的增大。因此,在实验中,微量B3+会在B2O3表面改性过程中扩散到材料晶格中,由于B—O键能大于TM—O键能,B和O之间的强结合能使TM层收缩,Na层间距增大,有利于Na+嵌入脱出,提高了材料的倍率性能。B3+掺入晶格内,使晶胞体积增大,抑制TM迁移,稳定晶体结构,有利于材料循环稳定性。
Fig. 3
(a) XRD of materials with different B2O3 content and (b) the (003) peaks; (c) Rietveld refinement results for the NFM; (d) Rietveld refinement results for the NFM@2%B2O3
Table 1
表1
表1空白 NFM和NFM@2%B2O3 包覆材料的晶格参数
Table 1 Lattice parameters for the NFM and NFM@2%B2O3
Fig. 6
(a) Initial charge-discharge curves at 0.1 C;(b) Cycling performance at 1 C;(c),(d) Charge-discharge curves of different cycles;(e) Rate performance of the NFM and different B2O3 contents materials
Fig. 7
The calculated dQ/dV profiles [(a),(b)]; initial and after 200 cycles cyclic voltammetry curves at 1mV/s [(c),(d)] of the NFM and NFM@2%B2O3; (e) Initial EIS curves; (f) EIS curves after 200 cycles; (g) The relationship between Z′ and w-1/2
WHITTINGHAM M S. Ultimate limits to intercalation reactions for lithium batteries[J]. Chemical Reviews, 2014, 114(23): 11414-11443.
TRAN Q N, KIM I T, HUR J, et al. Composite of nanocrystalline cellulose with tin dioxide as lightweight substrates for high-performance lithium-ion battery[J]. Korean Journal of Chemical Engineering, 2020, 37(5): 898-904.
CAO Y, YAN C Q, WANG Y F, et al. The technical route exploration of lithium ion battery with high safety and high energy density[J]. Energy Storage Science and Technology, 2018, 7(3): 384-393.
FANG Z, CAO Y L, HU Y S, et al. Economic analysis for room-temperature sodium-ion battery technologies[J]. Energy Storage Science and Technology, 2016, 5(2): 149-158.
WANG H, LIAO X Z, XIE Y Y, et al. Design and investigation on portable energy storage device based on sodium-ion batteries[J]. Energy Storage Science and Technology, 2016, 5(1): 65-68.
WANG H, LIAO X Z, YANG Y, et al. Large-scale synthesis of NaNi1/3Fe1/3Mn1/3O2 as high performance cathode materials for sodium ion batteries[J]. Journal of the Electrochemical Society, 2016, 163(3): A565-A570.
LIU H Q, GAO X, CHEN J, et al. Layered oxide cathode for sodium ion batteries: Interlayer glide, phase transition and performance[J]. Energy Storage Science and Technology, 2020, 9(5): 1327-1339.
XIE Y Y, WANG H, XU G L, et al. In operando XRD and TXM study on the metastable structure change of NaNi1/3Fe1/3Mn1/3O2 under electrochemical sodium-ion intercalation[J]. Advanced Energy Materials, 2016, 6(24): doi: 10.1002/aenm.201601306.
WANG P F, YOU Y, YIN Y X, et al. Layered oxide cathodes for sodium-ion batteries: Phase transition, air stability, and performance[J]. Advanced Energy Materials, 2018, 8(8): doi: 10.1002/aenm.201701912.
QI X G, WANG W G, HU Y S, et al. Surface modification research of layered oxide materials for sodium-ion batteries[J]. Energy Storage Science and Technology, 2020, 9(5): 1396-1401.
SUN L Q, XIE Y Y, LIAO X Z, et al. Insight into Ca-substitution effects on O3-Type NaNi1/3 Fe1/3 Mn1/3 O2 cathode materials for sodium-ion batteries application[J]. Small, 2018, 14(21): doi: 10.1002/smll.201704523.
LI L, WANG H B, HAN W Z, et al. Understanding oxygen redox in Cu-doped P2-Na0.67Mn0.8Fe0.1Co0.1O2 cathode materials for Na-ion batteries[J]. Journal of the Electrochemical Society, 2018, 165(16): A3854-A3861.
YU T Y, HWANG J Y, BAE I T, et al. High-performance Ti-doped O3-type Na[Tix(Ni0.6Co0.2Mn0.2)1-x]O2 cathodes for practical sodium-ion batteries[J]. Journal of Power Sources, 2019, 422: 1-8.
SUN Y, WANG H, CHE H Y, et al. Improved sodium storage performance of layered oxide cathode materials via ZrO2 coating[J]. The Chinese Journal of Process Engineering, 2022, 22(1): 72-78.
SUN H H, HWANG J Y, YOON C S, et al. Capacity degradation mechanism and cycling stability enhancement of AlF3-coated nanorod gradient Na[Ni0.65 Co0.08 Mn0.27]O2 cathode for sodium-ion batteries[J]. ACS Nano, 2018, 12(12): 12912-12922.
JO J H, CHOI J U, KONAROV A, et al. Sodium-ion batteries: Building effective layered cathode materials with long-term cycling by modifying the surface via sodium phosphate[J]. Advanced Functional Materials, 2018, 28(14): doi:10.1002/adfm.201705968.
ZHOU A J, WANG W H, LIU Q, et al. Stable, fast and high-energy-density LiCoO2 cathode at high operation voltage enabled by glassy B2O3 modification[J]. Journal of Power Sources, 2017, 362: 131-139.
LI J H, LIU Z Q, WANG Y F, et al. Investigation of facial B2O3 surface modification effect on the cycling stability and high-rate capacity of LiNi1/3Co1/3Mn1/3O2 cathode[J]. Journal of Alloys and Compounds, 2020, 834: doi: 10.1016/j.jallcom.2020.155150.
PAN L C, XIA Y G, QIU B, et al. Structure and electrochemistry of B doped Li(Li0.2Ni0.13Co0.13Mn0.54)1-xBxO2 as cathode materials for lithium-ion batteries[J]. Journal of Power Sources, 2016, 327: 273-280.
CHEN T, LI X, WANG H, et al. The effect of gradient boracic polyanion-doping on structure, morphology, and cycling performance of Ni-rich LiNi0.8Co0.15Al0.05O2 cathode material[J]. Journal of Power Sources, 2018, 374: 1-11.
CHEN J S, WANG X L, JIN E M, et al. Optimization of B2O3 coating process for NCA cathodes to achieve long-term stability for application in lithium ion batteries[J]. Energy, 2021, 222: 119913.
WANG W Z, WU L Y, LI Z W, et al. Stabilization of a 4.7 V high-voltage nickel-rich layered oxide cathode for lithium-ion batteries through boron-based surface residual lithium-tuned interface modification engineering[J]. ChemElectroChem, 2021, 8(11): 2014-2021.
SUN Y, WANG H, MENG D, et al. Degradation mechanism of O3-type NaNi1/3Fe1/3Mn1/3O2 cathode materials during ambient storage and their in situ regeneration[J]. ACS Applied Energy Materials, 2021, 4(3): 2061-2067.
XIE Y Y. Research of synthesis process, structure and thermal stability for NaNi1/3Fe1/3Mn1/3O2 cathode material based on in situ synchrotron X-ray techniques[D]. Shanghai: Shanghai Jiao Tong University, 2019.
... 通过XRD对空白NFM和NFM@B2O3正极材料的结晶度、相纯度进行了检测.从图3(a)可以看到,NFM和NFM@B2O3的XRD衍射曲线基本一致,可以归属于典型的层状六边形α-NaFeO2结构(R-3m空间群).衍射峰型尖锐且没有明显的杂质相,说明样品结晶度均良好且为纯的O3相.此外,从图3(b)可以看出,随着B2O3包覆量的增加,(003)峰向左发生了偏移,这表明少量B3+掺杂到晶格中,B3+掺杂会导致晶格常数增加[21-22].因此,通过XRD的Rietveld精修对空白NFM和NFM@2%B2O3正极材料的晶格参数进行分析.从图3(c)、(d)中可以看出,计算得到的衍射图谱与观测到的衍射图谱吻合较好,可靠性系数RP和RWP的值较低,表明精修后的结果在误差范围内.如表1所示,与空白NFM相比,改性后的材料晶格参数a减小,参数c和晶胞体积V增大,表明部分B3+掺杂到了晶格内,导致晶格参数的变化.随着B掺杂量的增加在掺B的LiNi1-x-y Co x Mn y O2和LiNi1-x-y Co x Al y O2正极材料[23-24]中也观察到了晶格参数和晶胞体积的增大.因此,在实验中,微量B3+会在B2O3表面改性过程中扩散到材料晶格中,由于B—O键能大于TM—O键能,B和O之间的强结合能使TM层收缩,Na层间距增大,有利于Na+嵌入脱出,提高了材料的倍率性能.B3+掺入晶格内,使晶胞体积增大,抑制TM迁移,稳定晶体结构,有利于材料循环稳定性. ...
1
... 通过XRD对空白NFM和NFM@B2O3正极材料的结晶度、相纯度进行了检测.从图3(a)可以看到,NFM和NFM@B2O3的XRD衍射曲线基本一致,可以归属于典型的层状六边形α-NaFeO2结构(R-3m空间群).衍射峰型尖锐且没有明显的杂质相,说明样品结晶度均良好且为纯的O3相.此外,从图3(b)可以看出,随着B2O3包覆量的增加,(003)峰向左发生了偏移,这表明少量B3+掺杂到晶格中,B3+掺杂会导致晶格常数增加[21-22].因此,通过XRD的Rietveld精修对空白NFM和NFM@2%B2O3正极材料的晶格参数进行分析.从图3(c)、(d)中可以看出,计算得到的衍射图谱与观测到的衍射图谱吻合较好,可靠性系数RP和RWP的值较低,表明精修后的结果在误差范围内.如表1所示,与空白NFM相比,改性后的材料晶格参数a减小,参数c和晶胞体积V增大,表明部分B3+掺杂到了晶格内,导致晶格参数的变化.随着B掺杂量的增加在掺B的LiNi1-x-y Co x Mn y O2和LiNi1-x-y Co x Al y O2正极材料[23-24]中也观察到了晶格参数和晶胞体积的增大.因此,在实验中,微量B3+会在B2O3表面改性过程中扩散到材料晶格中,由于B—O键能大于TM—O键能,B和O之间的强结合能使TM层收缩,Na层间距增大,有利于Na+嵌入脱出,提高了材料的倍率性能.B3+掺入晶格内,使晶胞体积增大,抑制TM迁移,稳定晶体结构,有利于材料循环稳定性. ...
1
... 通过XRD对空白NFM和NFM@B2O3正极材料的结晶度、相纯度进行了检测.从图3(a)可以看到,NFM和NFM@B2O3的XRD衍射曲线基本一致,可以归属于典型的层状六边形α-NaFeO2结构(R-3m空间群).衍射峰型尖锐且没有明显的杂质相,说明样品结晶度均良好且为纯的O3相.此外,从图3(b)可以看出,随着B2O3包覆量的增加,(003)峰向左发生了偏移,这表明少量B3+掺杂到晶格中,B3+掺杂会导致晶格常数增加[21-22].因此,通过XRD的Rietveld精修对空白NFM和NFM@2%B2O3正极材料的晶格参数进行分析.从图3(c)、(d)中可以看出,计算得到的衍射图谱与观测到的衍射图谱吻合较好,可靠性系数RP和RWP的值较低,表明精修后的结果在误差范围内.如表1所示,与空白NFM相比,改性后的材料晶格参数a减小,参数c和晶胞体积V增大,表明部分B3+掺杂到了晶格内,导致晶格参数的变化.随着B掺杂量的增加在掺B的LiNi1-x-y Co x Mn y O2和LiNi1-x-y Co x Al y O2正极材料[23-24]中也观察到了晶格参数和晶胞体积的增大.因此,在实验中,微量B3+会在B2O3表面改性过程中扩散到材料晶格中,由于B—O键能大于TM—O键能,B和O之间的强结合能使TM层收缩,Na层间距增大,有利于Na+嵌入脱出,提高了材料的倍率性能.B3+掺入晶格内,使晶胞体积增大,抑制TM迁移,稳定晶体结构,有利于材料循环稳定性. ...
1
... 通过XRD对空白NFM和NFM@B2O3正极材料的结晶度、相纯度进行了检测.从图3(a)可以看到,NFM和NFM@B2O3的XRD衍射曲线基本一致,可以归属于典型的层状六边形α-NaFeO2结构(R-3m空间群).衍射峰型尖锐且没有明显的杂质相,说明样品结晶度均良好且为纯的O3相.此外,从图3(b)可以看出,随着B2O3包覆量的增加,(003)峰向左发生了偏移,这表明少量B3+掺杂到晶格中,B3+掺杂会导致晶格常数增加[21-22].因此,通过XRD的Rietveld精修对空白NFM和NFM@2%B2O3正极材料的晶格参数进行分析.从图3(c)、(d)中可以看出,计算得到的衍射图谱与观测到的衍射图谱吻合较好,可靠性系数RP和RWP的值较低,表明精修后的结果在误差范围内.如表1所示,与空白NFM相比,改性后的材料晶格参数a减小,参数c和晶胞体积V增大,表明部分B3+掺杂到了晶格内,导致晶格参数的变化.随着B掺杂量的增加在掺B的LiNi1-x-y Co x Mn y O2和LiNi1-x-y Co x Al y O2正极材料[23-24]中也观察到了晶格参数和晶胞体积的增大.因此,在实验中,微量B3+会在B2O3表面改性过程中扩散到材料晶格中,由于B—O键能大于TM—O键能,B和O之间的强结合能使TM层收缩,Na层间距增大,有利于Na+嵌入脱出,提高了材料的倍率性能.B3+掺入晶格内,使晶胞体积增大,抑制TM迁移,稳定晶体结构,有利于材料循环稳定性. ...