Herein, the molecular dynamics method investigates the effects of Al2O3 nanoparticles on the structure and thermophysical properties of binary chloride salt LiCl-KCl. Furthermore, the effect of doping amount and temperature on radial distribution function, coordination number [N(r)], self-diffusion coefficient(D), density, viscosity, and thermal conductivity of nanofluids were analyzed. The results show that in the temperature range of 700~1400 K, with increasing nanoparticles, the first peak position of the radial distribution function gLi-Cl(r) moves to the left gradually, the peak height and the coordination number increase, and the self-diffusion coefficient decreases gradually. The density, viscosity, and thermal conductivity of nanofluids decreased with increasing temperature but increased with increasing nanoparticles, and the maximum viscosity and thermal conductivity increased by 16.83% and 4.95%, respectively. The change in thermophysical properties was attributed to adding Al2O3 nanoparticles that reduced the distance between anions in the nanofluids, enhancing the association effect, and making the melt structure more compact.
TIAN Heqing. Molecular dynamics simulation of structure and thermal properties of LiCl-KCl molten salt nanofluids[J]. Energy Storage Science and Technology, 2023, 12(3): 654-660
MAHDI J M, NSOFOR E C. Solidification enhancement of PCM in a triplex-tube thermal energy storage system with nanoparticles and fins[J]. Applied Energy, 2018, 211: 975-986.
SHARMA A, TYAGI V V, CHEN C R, et al. Review on thermal energy storage with phase change materials and applications[J]. Renewable and Sustainable Energy Reviews, 2009, 13(2): 318-345.
SAID M A, HASSAN H. Effect of using nanoparticles on the performance of thermal energy storage of phase change material coupled with air-conditioning unit[J]. Energy Conversion and Management, 2018, 171: 903-916.
LI Z, LI B R, CUI L, et al. Stability of the thermal performances of molten salt-based nanofluid[J]. Energy Storage Science and Technology, 2020, 9(6): 1775-1783.
WEI X L, YIN Y, QIN B, et al. Preparation and enhanced thermal conductivity of molten salt nanofluids with nearly unaltered viscosity[J]. Renewable Energy, 2020, 145: 2435-2444.
HAN D M, GUENE LOUGOU B, XU Y T, et al. Thermal properties characterization of chloride salts/nanoparticles composite phase change material for high-temperature thermal energy storage[J]. Applied Energy, 2020, 264: doi: 10.1016/j.apenergy.2020.114674.
HAN D M, LOUGOU B G, SHUAI Y, et al. Study of thermophysical properties of chloride salts doped with CuO nanoparticles for solar thermal energy storage[J]. Solar Energy Materials and Solar Cells, 2022, 234: doi: 10.1016/j.solmat.2021.111432.
CHEN X, WU Y T, ZHANG L D, et al. Experimental study on thermophysical properties of molten salt nanofluids prepared by high-temperature melting[J]. Solar Energy Materials and Solar Cells, 2019, 191: 209-217.
YU Y S, ZHAO C Y, TAO Y B, et al. Superior thermal energy storage performance of NaCl-SWCNT composite phase change materials: A molecular dynamics approach[J]. Applied Energy, 2021, 290: doi: 10.1016/j.apenergy.2021.116799.
XIAN L, CHEN L, TIAN H Q, et al. Enhanced thermal energy storage performance of molten salt for the next generation concentrated solar power plants by SiO2 nanoparticles: A molecular dynamics study[J]. Applied Energy, 2022, 323: doi: 10.1016/j.apenergy.2022.119555.
PAN G C, DING J, WANG W L, et al. Molecular simulations of the thermal and transport properties of alkali chloride salts for high-temperature thermal energy storage[J]. International Journal of Heat and Mass Transfer, 2016, 103: 417-427.
FUMI F G, TOSI M P. Ionic sizes and born repulsive parameters in the NaCl-type alkali halides—I[J]. Journal of Physics and Chemistry of Solids, 1964, 25(1): 31-43.
JIANG T, WANG N, CHENG C M, et al. Molecular dynamics simulation on the structure and thermodynamics of molten LiCl-KCl-CeCl3[J]. Acta Physico-Chimica Sinica, 2016, 32(3): 647-655.
CACCAMO C, DIXON M. Molten alkali-halide mixtures: A molecular-dynamics study of Li/KCl mixtures[J]. Journal of Physics C: Solid State Physics, 1980, 13(10): 1887-1900.
LARSEN B, FØRLAND T, SINGER K. A Monte Carlo calculation of thermodynamic properties for the liquid NaCl+KCl mixture[J]. Molecular Physics, 1973, 26(6): 1521-1532.
ZHOU W N, YANG Z X, FENG Y H, et al. Insights into the thermophysical properties and heat conduction enhancement of NaCl-Al2O3 composite phase change material by molecular dynamics simulation[J]. International Journal of Heat and Mass Transfer, 2022, 198: doi: 10.1016/j.ijheatmasstransfer.2022.123422.
XIE W J, DING J, PAN G, et al. Heat and mass transportation properties of binary chloride salt as a high-temperature heat storage and transfer media[J]. Solar Energy Materials and Solar Cells, 2020, 209: doi: 10.1016/j.solmat.2020.110415.
CUI W Z, SHEN Z J, YANG J G, et al. Molecular dynamics simulation on the microstructure of absorption layer at the liquid-solid interface in nanofluids[J]. International Communications in Heat and Mass Transfer, 2016, 71: 75-85.
LI Z, CUI L, LI B R, et al. Enhanced heat conduction in molten salt containing nanoparticles: Insights from molecular dynamics[J]. International Journal of Heat and Mass Transfer, 2020, 153: doi: 10.1016/j.ijheatmasstransfer.2020.119578.
SARKAR S, SELVAM R P. Molecular dynamics simulation of effective thermal conductivity and study of enhanced thermal transport mechanism in nanofluids[J]. Journal of Applied Physics, 2007, 102(7): doi: 10.1063/1.2785009.
WILLIAMS D F, TOTH L M, CLARNO K T. Assessment of candidate molten salt coolants for the advanced high-temperature reactor[R]. Tennessee: Oak Ridge National Laboratory, 2006.
VAN ARTSDALEN E R, YAFFE I S. Electrical conductance and density of molten salt systems: KCl-LiCl, KCl-NaCl and KCl-KI[J]. The Journal of Physical Chemistry, 1955, 59(2): 118-127.
WANG J, SUN Z, LU G M, et al. Molecular dynamics simulation for the densities of molten binary alkali metal chlorides[J]. Journal of East China University of Science and Technology (Natural Science Edition), 2016, 42(6): 771-781.
YU Y S, TAO Y B, ZHAO C Y, et al. Thermal storage performance enhancement and regulation mechanism of KNO3-SWCNT based composite phase change materials[J]. International Journal of Heat and Mass Transfer, 2021, 181: doi: 10.1016/j.ijheatmasstransfer.2021.121870.
ZHANG J, FULLER J, AN Q. Coordination and thermophysical properties of transition metal chloro complexes in LiCl-KCl eutectic[J]. The Journal of Physical Chemistry B, 2021, 125(31): 8876-8887.