锂离子电池由于其高能量密度、高循环寿命等优点被广泛应用于电力储能和新能源汽车中。准确估计电池的荷电状态(state of charge,SOC)对提高电池使用寿命和利用效率具有重要意义。然而,锂电池是一个高度复杂、时变和非线性的电化学系统。因此,精度高的在线SOC估计方法对锂电池的实际应用非常重要。近年来,基于模型的SOC估计方法由于其闭环控制、易于实现等特点被广泛关注和研究。本文从模型分类、模型参数辨识算法、SOC估计算法以及SOC估计影响因素对基于模型的SOC估计方法进行综述,首先归纳总结了各种常见的锂离子电池模型,主要介绍了各种常见电化学模型和等效电路模型并进行对比分析;然后重点对模型建立方法和SOC状态估计算法进行梳理和对比,主要介绍了各种模型参数辨识方法及SOC估计方法并进行了对比分析;之后对影响基于模型的SOC估计方法精度的影响因素及解决方法进行分析和总结,主要从温度、老化以及电池组对电池SOC估计的影响进行分析;最后对未来的研究方向进行了讨论和展望。
关键词:锂离子电池
;
等效电路模型
;
电化学模型
;
荷电状态
;
在线估算
Abstract
Lithium-ion batteries are extensively used in electric energy storage and new vehicles due to their high energy density and long cycle life. Accurate estimation of the battery's state of charge(SOC) is crucial for improving its service life and utilization efficiency. However, lithium batteries are a highly complex, time-varying, and nonlinear electrochemical system. Thus, an online SOC estimation method with high accuracy is vital for the practical application of lithium batteries. In recent years, model-based SOC estimation methods have gained widespread attention and research because of their closed-loop control and ease of implementation. This paper reviews model-based SOC estimation methods from the aspects of model classification, model parameter identification algorithm, SOC estimation algorithms, and factors influencing SOC estimation. First, various common lithium-ion battery models are summarized, primarily focusing on introducing and comparing common electrochemical and equivalent circuit models. Then, the model establishment methods and SOC state estimation algorithms are examined and compared; various model parameter identification methods and SOC estimation calculation methods are introduced and contrasted. After that, the influencing factors and solutions of the model-based SOC estimation method are analyzed and summarized, mainly addressing the impact of temperature, aging, and battery pack factors on battery SOC estimation. Finally, potential future research directions are discussed and explored.
Keywords:lithium-ion batteries
;
equivalent circuit model
;
electrochemical model
;
state of charge
;
online estimation
TAN Birong. Overview of SOC estimation methods for lithium-ion batteries based on model[J]. Energy Storage Science and Technology, 2023, 12(6): 1995-2010
PARK S, AHN J, KANG T, et al. Review of state-of-the-art battery state estimation technologies for battery management systems of stationary energy storage systems[J]. Journal of Power Electronics, 2020, 20(6): 1526-1540.
ALI M U, ZAFAR A, NENGROO S H, et al. Towards a smarter battery management system for electric vehicle applications: A critical review of lithium-ion battery state of charge estimation[J]. Energies, 2019, 12(3): 446.
KIM T, OCHOA J, FAIKA T, et al. An overview of cyber-physical security of battery management systems and adoption of blockchain technology[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2022, 10(1): 1270-1281.
YU Q Q, WAN C J, LI J F, et al. An open circuit voltage model fusion method for state of charge estimation of lithium-ion batteries[J]. Energies, 2021, 14(7): 1797.
SOMAKETTARIN N, FUNAKI T. Study on factors for accurate open circuit voltage characterizations in Mn-type Li-ion batteries[J]. Batteries, 2017, 3(4): 8.
LI Z, LU L G, OUYANG M G. Comparison of methods for improving SOC estimation accuracy through an ampere-hour integeration approach[J]. Journal of Tsinghua University (Science and Technology), 2010, 50(8): 1293-1296, 1301.
ZHANG M Y, FAN X B. Design of battery management system based on improved ampere-hour integration method[J]. International Journal of Electric and Hybrid Vehicles, 2022, 14(1/2): 1.
HOW D N T, HANNAN M A, HOSSAIN LIPU M S, et al. State of charge estimation for lithium-ion batteries using model-based and data-driven methods: A review[J]. IEEE Access, 2019, 7: 136116-136136.
HAMETNER C, JAKUBEK S, PROCHAZKA W. Data-driven design of a cascaded observer for battery state of health estimation[J]. IEEE Transactions on Industry Applications, 2018, 54(6): 6258-6266.
XIONG R, SUN F C, HE H W. Data-driven State-of-Charge estimator for electric vehicles battery using robust extended Kalman filter[J]. International Journal of Automotive Technology, 2014, 15(1): 89-96.
SHAH A, SHAH K, SHAH C, et al. State of charge, remaining useful life and knee point estimation based on artificial intelligence and Machine learning in lithium-ion EV batteries: A comprehensive review[J]. Renewable Energy Focus, 2022, 42: 146-164.
KOU F R, LUO X, MEN H, et al. State of charge estimation of lithium battery based on feature optimization and improved extreme learning machine[J]. Energy Storage Science and Technology, 2023, 12(4): 1234-1243.
ATTANAYAKA A M S M H S, KARUNADASA J P, HEMAPALA K T M U. Estimation of state of charge for lithium-ion batteries-A Review[J]. AIMS Energy, 2019, 7(2): 186-210.
HE Z G, LI Y T, SUN Y Y, et al. State-of-charge estimation of lithium-ion batteries based on an adaptive iterative extended Kalman filter[J]. Journal of Energy Storage, 2021, 39: doi: 10.1016/j.est.2021.102593.
ZHANG Z W, GUO T Z, GAO M Y, et al. Review of SoC estimation methods for electric vehicle Li-ion batteries[J]. Journal of Electronics & Information Technology, 2021, 43(7): 1803-1815.
CHIEW J, CHIN C S, TOH W D, et al. A pseudo three-dimensional electrochemical-thermal model of a cylindrical LiFePO4/graphite battery[J]. Applied Thermal Engineering, 2019, 147: 450-463.
LIU Y T, MA R, PANG S Z, et al. A nonlinear observer SOC estimation method based on electrochemical model for lithium-ion battery[J]. IEEE Transactions on Industry Applications, 2021, 57(1): 1094-1104.
LEE J H, CHOI W J. Novel state-of-charge estimation method for lithium polymer batteries using electrochemical impedance spectroscopy[J]. Journal of Power Electronics, 2011, 11(2): 237-243.
PAVKOVIC D, KRZNAR M, KOMLJENOVIC A, et al. Dual EKF-based state and parameter estimator for a LiFePO4 battery cell[J]. Journal of Power Electronics, 2017, 17(2): 398-410.
GAO M K, XU H L, WU M B. Overview of SOC estimation methods for power batteries based on equivalent circuit model[J]. Journal of Electrical Engineering, 2021, 16(1): 90-102.
MA X A, QIU D F, TAO Q, et al. State of charge estimation of a lithium ion battery based on adaptive Kalman filter method for an equivalent circuit model[J]. Applied Sciences, 2019, 9(13): 2765.
AHMED R, RAHIMIFARD S, HABIBI S. Offline parameter identification and SOC estimation for new and aged electric vehicles batteries[C]//2019 IEEE Transportation Electrification Conference and Expo (ITEC). June 19-21, 2019, Detroit, MI, USA. IEEE, 2019: 1-6.
SALAZAR D, GARCIA M. Estimation and comparison of SOC in batteries used in electromobility using the thevenin model and coulomb ampere counting[J]. Energies, 2022, 15(19): 7204.
DOYLE M, FULLER T F, NEWMAN J. Modeling of galvanostatic charge and discharge of the lithium/polymer/insertion cell[J]. Journal of the Electrochemical Society, 1993, 140(6): 1526-1533.
SMITH K A, RAHN C D, WANG C Y. Control oriented 1D electrochemical model of lithium ion battery[J]. Energy Conversion and Management, 2007, 48(9): 2565-2578.
JOKAR A, RAJABLOO B, DÉSILETS M, et al. Review of simplified Pseudo-two-Dimensional models of lithium-ion batteries[J]. Journal of Power Sources, 2016, 327: 44-55.
SHRIVASTAVA P, SOON T K, BIN IDRIS M Y I, et al. Overview of model-based online state-of-charge estimation using Kalman filter family for lithium-ion batteries[J]. Renewable and Sustainable Energy Reviews, 2019, 113: doi: 10.1016/j.rser.2019.06.040.
HARAN B S, POPOV B N, WHITE R E. Determination of the hydrogen diffusion coefficient in metal hydrides by impedance spectroscopy[J]. Journal of Power Sources, 1998, 75(1): 56-63.
CHENG Q Y, ZHANG X, GAO Y Z, et al. Estimating state of Li-ion battery based on reduced-order electrochemical model[J]. Battery Bimonthly, 2021, 51(2): 110-113.
SCHMIDT A P, BITZER M, IMRE Á W, et al. Experiment-driven electrochemical modeling and systematic parameterization for a lithium-ion battery cell[J]. Journal of Power Sources, 2010, 195(15): 5071-5080.
LIU Z Y, YANG K, WEI Z H, et al. Electrochemical model of lithium ion battery with simplified liquid phase diffusion equation[J]. Acta Physica Sinica, 2019, 68(9): 251-258.
LI C L, CUI N, WANG C Y, et al. Reduced-order electrochemical model for lithium-ion battery with domain decomposition and polynomial approximation methods[J]. Energy, 2021, 221: doi:10.1016/J.ENERGY.2020.119662.
TIAN H, WANG W G, SHU G Q, et al. Analysis of heat generation in a Li-ion battery based on a multi-scale and electrochemical-thermal coupled model[J]. Journal of Tianjin University (Science and Technology), 2016, 49(7): 734-741.
YANG S C, GAO X L, LI Y L, et al. Minimum lithium plating overpotential control based charging strategy for parallel battery module prevents side reactions[J]. Journal of Power Sources, 2021, 494: doi:10.1016/J.JPOWSOUR.2021.229772.
LIN C T, QIU B, CHEN Q S. Comparison of current input equivalent circuit models of electrical vehicle battery[J]. Chinese Journal of Mechanical Engineering, 2005, 41(12): 76-81.
NEJAD S, GLADWIN D T, STONE D A. A systematic review of lumped-parameter equivalent circuit models for real-time estimation of lithium-ion battery states[J]. Journal of Power Sources, 2016, 316: 183-196.
RAMSEY D, GERMAN R, BOUSCAYROL A, et al. Comparison of equivalent circuit battery models for energetic studies on electric vehicles[C]//2020 IEEE Vehicle Power and Propulsion Conference (VPPC). November 18 - December 16, 2020, Gijon, Spain. IEEE, 2021: 1-5.
HIDALGO-LEON R, URQUIZO J, JACOME-RUIZ P, et al. Modeling battery under discharge using improved thevenin-shepherd electrical battery model[C]//2018 IEEE Vehicle Power and Propulsion Conference (VPPC). August 27-30, 2018, Chicago, IL, USA. IEEE, 2019: 1-5.
ZHOU J, HUA Y H, LIU K, et al. Research on a high-precision modeling scheme for lithium-ion battery[J]. Proceedings of the CSEE, 2019, 39(21): 6394-6403.
MILISHCHUK R, BOGODOROVA T. Thevenin-based battery model with ageing effects in modelica[C]//2022 IEEE 21st Mediterranean Electrotechnical Conference (MELECON). June 14-16, 2022, Palermo, Italy. IEEE, 2022: 243-248.
JI Y J, QIU S L, LI G. Simulation of second-order RC equivalent circuit model of lithium battery based on variable resistance and capacitance[J]. Journal of Central South University, 2020, 27(9): 2606-2613.
LAI X, ZHENG Y J, SUN T. A comparative study of different equivalent circuit models for estimating state-of-charge of lithium-ion batteries[J]. Electrochimica Acta, 2018, 259: 566-577.
MADANI S S, SCHALTZ E, KÆR S K. A review of different electric equivalent circuit models and parameter identification methods of lithium-ion batteries[J]. ECS Transactions, 2018, 87(1): 23-37.
YAN X W, GUO Y W, CUI Y, et al. Electric vehicle battery SOC estimation based on GNL model adaptive Kalman filter[J]. Journal of Physics: Conference Series, 2018, 1087: doi: 10.1088/1742-6596/1087/5/052027.
STEVANATTO L C, BRUSAMARELLO V J, TAIROV S. Parameter identification and analysis of uncertainties in measurements of lead-acid batteries[J]. IEEE Transactions on Instrumentation and Measurement, 2014, 63(4): 761-768.
WANG L. Prameter identification and state of charge estimation of lithiium battery based on adaptive Kalman filter[D]. Harbin: Harbin Institute of Technology, 2019.
KOSTETZER L, NEBL C, STICH M, et al. Physics-based modeling and parameter identification for lithium ion batteries under high current discharge conditions[J]. Journal of the Electrochemical Society, 2020, 167(14): doi: 10.1149/1945-7111/abc726.
FERAHTIA S, DJEROUI A, REZK H, et al. Optimal parameter identification strategy applied to lithium-ion battery model[J]. International Journal of Energy Research, 2021, 45(11): 16741-16753.
ZHANG L Q, WANG X Y, CHEN M Y, et al. A fractional-order model of lithium-ion batteries and multi-domain parameter identification method[J]. Journal of Energy Storage, 2022, 50: doi: 10.1016/j.est.2022.104595.
GUO X W, SI Y, GAO Y, et al. Research on the optimal equivalent circuit model of lithium-ion battery[J]. Journal of Electronic Measurement and Instrumentation, 2021, 35(1): 48-55.
LIM K, BASTAWROUS H A, DUONG V H, et al. Fading Kalman filter-based real-time state of charge estimation in LiFePO4 battery-powered electric vehicles[J]. Applied Energy, 2016, 169: 40-48.
SARRAFAN K, MUTTAQI K, SUTANTO D. Real-time estimation of model parameters and state-of-charge of lithiumion batteries in electric vehicles using recursive least-square with forgetting factor[C]//2018 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES). December 18-21, 2018, Chennai, India. IEEE, 2019: 1-6.
WANG J F, ZHANG Z Z, LI P. State of charge estimation for lithium-ion battery based on adaptive recursive weighted least squares and extended Kalman filter algorithm[J]. Automobile Technology, 2021(10): 16-22.
SHI N, CHEN Z W, NIU M, et al. State-of-charge estimation for the lithium-ion battery based on adaptive extended Kalman filter using improved parameter identification[J]. Journal of Energy Storage, 2022, 45: doi: 10.1016/j.est.2021.103518.
ZHU R, DUAN B, WEN F Z, et al. Lithium-ion battery modeling and parameter identification based on decentralized least squares method[J]. Journal of Mechanical Engineering, 2019, 55(20): 85-93.
WANG L M, LU D, LIU Q, et al. State of charge estimation for LiFePO4 battery via dual extended Kalman filter and charging voltage curve[J]. Electrochimica Acta, 2019, 296: 1009-1017.
HUANG K, GUO Y F, LI Z G. High precision parameter identification of lithium-ion battery model based on feedback particle swarm optimization algorithm[J]. Transactions of China Electrotechnical Society, 2019, 34(S1): 378-387.
LIU F, MA J, SU W X, et al. Model parameter online identification based SOC estimation method[J]. Journal of Northeastern University (Natural Science), 2020, 41(11): 1543-1549.
KWAK M. A variable-length scale parameter dependent state of charge estimation of lithium ion batteries by Kalman filters[J]. International Journal of Electrochemical Science, 2022,17: doi: 10.20964/2022.02.18.
GUSTAFSSON F, HENDEBY G. Some relations between extended and unscented Kalman filters[J]. IEEE Transactions on Signal Processing, 2012, 60(2): 545-555.
CHENG Z, LV J K, LIU Y L, et al. Estimation of state of charge for lithium-ion battery based on finite difference extended Kalman filter[J]. Journal of Applied Mathematics, 2014, 2014: 1-10.
PAN H H, LÜ Z Q, LI J Z, et al. Estimation of lithium-ion battery state of charge based on grey prediction model-extended Kalman filter[J]. Transactions of China Electrotechnical Society, 2017, 32(21): 1-8.
SUN D M, YU X L, WANG C M, et al. State of charge estimation for lithium-ion battery based on an Intelligent Adaptive Extended Kalman Filter with improved noise estimator[J]. Energy, 2021, 214: doi: 10.1016/j.energy.2020.119025.
ADAIKKAPPAN M, SATHIYAMOORTHY N. A real time state of charge estimation using Harris Hawks optimization-based filtering approach for electric vehicle power batteries[J]. International Journal of Energy Research, 2022, 46(7): 9293-9309.
MAHESHWARI A, NAGESWARI S. Real-time state of charge estimation for electric vehicle power batteries using optimized filter[J]. Energy, 2022, 254: doi: 10.1016/j.energy.2022.124328.
AUNG H, LOW K S. Temperature dependent state-of-charge estimation of lithium ion battery using dual spherical unscented Kalman filter[J]. IET Power Electronics, 2015, 8(10): 2026-2033.
PARTOVIBAKHSH M, LIU G J. An adaptive unscented Kalman filtering approach for online estimation of model parameters and state-of-charge of lithium-ion batteries for autonomous mobile robots[J]. IEEE Transactions on Control Systems Technology, 2015, 23(1): 357-363.
NGUYEN T T, KHAN A B, KO Y, et al. An accurate state of charge estimation method for lithium iron phosphate battery using a combination of an unscented Kalman filter and a particle filter[J]. Energies, 2020, 13(17): 4536.
FEI Y L, XIE C J, TANG Z B, et al. State-of-charge estimation based on square root unscented Kalman filter algorithm for Li-ion batteries[J]. Proceedings of the CSEE, 2017, 37(15): 4514-4520, 4593.
HAVANGI R. Adaptive robust unscented Kalman filter with recursive least square for state of charge estimation of batteries[J]. Electrical Engineering, 2022, 104(2): 1001-1017.
ZHANG J H, LI Q, CHEN D P, et al. State co-estimation algorithm for Li-ion power batteries based on adaptive unscented Kalman filters[J]. Journal of Northeastern University (Natural Science), 2020, 41(11): 1557-1563.
CHENG Z, YANG L, SUN X M. State of charge and state of health estimation of Li-ion batteries based on adaptive square-root unscented Kalman filters[J]. Proceedings of the CSEE, 2018, 38(8): 2384-2393, 2548.
PENG N A, ZHANG S Z, GUO X, et al. Online parameters identification and state of charge estimation for lithium-ion batteries using improved adaptive dual unscented Kalman filter[J]. International Journal of Energy Research, 2021, 45(1): 975-990.
LOUKIL J, MASMOUDI F, DERBEL N. A real-time estimator for model parameters and state of charge of lead acid batteries in photovoltaic applications[J]. Journal of Energy Storage, 2021, 34: doi: 10.1016/j.est.2020.102184.
WADI A L, ABDEL-HAFEZ M, HUSSEIN A A. Computationally efficient state-of-charge estimation in Li-ion batteries using enhanced dual-kalman filter[J]. Energies, 2022, 15(10): 3717.
CUI X Y, JING Z, LUO M J, et al. A new method for state of charge estimation of lithium-ion batteries using square root cubature Kalman filter[J]. Energies, 2018, 11(1): 209.
LINGHU J Q, KANG L Y, LIU M, et al. Estimation for state-of-charge of lithium-ion battery based on an adaptive high-degree cubature Kalman filter[J]. Energy, 2019, 189: doi: 10.1016/j.energy.2019.116204.
ELSAYED A, GRIMBLE M J. A new approach to the H ∞ design of optimal digital linear filters[J]. IMA Journal of Mathematical Control and Information, 1989, 6(2): 233-251.
ALFI A, CHARKHGARD M, HADDAD ZARIF M. Hybrid state of charge estimation for lithium-ion batteries: Design and implementation[J]. IET Power Electronics, 2014, 7(11): 2758-2764.
XIONG R, YU Q Q, WANG L Y, et al. A novel method to obtain the open circuit voltage for the state of charge of lithium ion batteries in electric vehicles by using H infinity filter[J]. Applied Energy, 2017, 207: 346-353.
ZHANG S S, WAN Y H, DING J E, et al. State of charge (SOC) estimation based on extended exponential weighted moving average H∞ filtering[J]. Energies, 2021, 14(6): 1655.
SUN D, CHEN X K. Charge state estimation of Li-ion batteries based on discrete-time sliding mode observers[J]. Proceedings of the CSEE, 2015, 35(1): 185-191.
SUI X, CHEN Y C, ZHANG X H, et al. Improved sliding mode observer for state of charge estimation of lithium-ion battery[J]. Advanced Technology of Electrical Engineering and Energy, 2018, 37(12): 73-82.
NATH A, GUPTA R, MEHTA R, et al. Attractive ellipsoid sliding mode observer design for state of charge estimation of lithium-ion cells[J]. IEEE Transactions on Vehicular Technology, 2020, 69(12): 14701-14712.
LIU F, MA J, SU W X, et al. SOC estimation based on data driven exteaded Kalman filter algorithm for power battery of electric vehicle and plug-in electric vehicle[J]. Journal of Central South University, 2019, 26(6): 1402-1415.
GIM J, CHOI W, AHN C. Design of unscented Kalman filter with gated recurrent units-based battery model for SOC estimation[J]. Transaction of the Korean Society of Automotive Engineers, 2022, 30(1): 61-68.
WANG X L, JIN H Q, LIU X Y. Online estimation of the state of charge of a lithium-ion battery based on the fusion model[J]. Chinese Journal of Engineering, 2020, 42(9): 1200-1208.
CHEN Q Y, HE Y H, YU G D, et al. Accurate state estimation of lithium battery driven by model and data[J]. Energy Storage Science and Technology, 2023, 12(1): 209-217.
ZHU W K, ZHOU X, LIU Y J, et al. Real-time estimation method of state of charge of lithium ion battery based on neural network of step-by-step control cycle unit[J]. Energy Storage Science and Technology, 2023, 12(2): 570-578.
REN B Y, SUN J, SUN X D, et al. Estimation of state of charge of lithium-ion battery based on KF-SRUKF algorithm[J]. Advanced Technology of Electrical Engineering and Energy, 2022, 41(10): 1-10.
WRIGHT R B, MOTLOCH C G, BELT J R, et al. Calendar- and cycle-life studies of advanced technology development program generation 1 lithium-ion batteries[J]. Journal of Power Sources, 2002, 110(2): 445-470.
ISHIZAKI R, LIN L, FUKUI M. An accurate SOC estimation method for lithium-ion batteries which considers thermal variation[J]. Electrochemistry, 2015, 83(10): 852-854.
GOMEZ J, NELSON R, KALU E E, et al. Equivalent circuit model parameters of a high-power Li-ion battery: Thermal and state of charge effects[J]. Journal of Power Sources, 2011, 196(10): 4826-4831.
TANIM T R, RAHN C D, WANG C Y. State of charge estimation of a lithium ion cell based on a temperature dependent and electrolyte enhanced single particle model[J]. Energy, 2015, 80: 731-739.
SHEN J W. Study on estimation of state of charge of vehicle lithium battery in wide temperature and full life[D].Kunming: Kunming University of Science and Technology, 2021.
ZHENG X, ZHANG Z Q. State of charge estimation at different temperatures based on dynamic thermal model for lithium-ion batteries[J]. Journal of Energy Storage, 2022, 48: doi: 10.1016/j.est.2022.104011.
JIANG Y, CHEN Z Q. Average temperature estimation for lithium-ion batteries at variable environment temperature[J]. Journal of Shanghai Jiao Tong University, 2021, 55(7): 781-790.
OUYANG K L, FAN Y Q, YAZDI M, et al. Data-driven-based internal temperature estimation for lithium-ion battery under variant state-of-charge via electrochemical impedance spectroscopy[J]. Energy Technology, 2022, 10(3): doi: 10.1002/ente.202100910.
STROE A I, KNAP V, STROE D I. Comparison of lithium-ion battery performance at beginning-of-life and end-of-life[J]. Microelectronics Reliability, 2018, 88/89/90: 1251-1255.
MANDLI A R, KAUSHIK A, PATIL R S, et al. Analysis of the effect of resistance increase on the capacity fade of lithium ion batteries[J]. International Journal of Energy Research, 2019, 43(6): 2044-2056.
BARCELLONA S, COLNAGO S, DOTELLI G, et al. Aging effect on the variation of Li-ion battery resistance as function of temperature and state of charge[J]. Journal of Energy Storage, 2022, 50: doi: 10.1016/j.est.2022.104658.
BAGHDADI I, BRIAT O, DELÉTAGE J Y, et al. Lithium battery aging model based on Dakin's degradation approach[J]. Journal of Power Sources, 2016, 325: 273-285.
ALLAM A, ONORI S. Online capacity estimation for lithium-ion battery cells via an electrochemical model-based adaptive interconnected observer[J]. IEEE Transactions on Control Systems Technology, 2021, 29(4): 1636-1651.
WU Y, ZHAO H, WANG Y C, et al. Research on life cycle SOC estimation method of lithium-ion battery oriented to decoupling temperature[J]. Energy Reports, 2022, 8: 4182-4195.
DU C Q, SHAO J B, WU D M, et al. Research on co-estimation algorithm of SOC and SOH for lithium-ion batteries in electric vehicles[J]. Electronics, 2022, 11(2): 181.
LIU L, NIU M, ZHENG W J, et al. Modeling of lithium-ion battery packs for energy storage system considering inconsistency of internal battery parameters[J]. Automation of Electric Power Systems, 2021, 45(19): 15-23.
GHAEMINEZHAD N, OUYANG Q, HU X S, et al. Active cell equalization topologies analysis for battery packs: A systematic review[J]. IEEE Transactions on Power Electronics, 2021, 36(8): 9119-9135.
TURKSOY A, TEKE A, ALKAYA A. A comprehensive overview of the dc-dc converter-based battery charge balancing methods in electric vehicles[J]. Renewable and Sustainable Energy Reviews, 2020, 133: doi: 10.1016/j.rser.2020.110274.
HUA Y, ZHOU S D, CUI H G, et al. A comprehensive review on inconsistency and equalization technology of lithium-ion battery for electric vehicles[J]. International Journal of Energy Research, 2020, 44(14): 11059-11087.
HEIN T, ZIEGLER A, OESER D, et al. A capacity-based equalization method for aged lithium-ion batteries in electric vehicles[J]. Electric Power Systems Research, 2021, 191: doi: 10.1016/j.epsr.2020.106898.
MCCURLIE L, PREINDL M, EMADI A. Fast model predictive control for redistributive lithium-ion battery balancing[J]. IEEE Transactions on Industrial Electronics, 2017, 64(2): 1350-1357.
SONG L J, LIANG T Y, LU L G, et al. Lithium-ion battery pack equalization based on charging voltage curves[J]. International Journal of Electrical Power & Energy Systems, 2020, 115: doi: 10.1016/j.ijepes.2019.105516.
WANG Y J, ZHANG C B, CHEN Z H, et al. A novel active equalization method for lithium-ion batteries in electric vehicles[J]. Applied Energy, 2015, 145: 36-42.
MA Y, DUAN P, SUN Y S, et al. Equalization of lithium-ion battery pack based on fuzzy logic control in electric vehicle[J]. IEEE Transactions on Industrial Electronics, 2018, 65(8): 6762-6771.
GOGOANA R, PINSON M B, BAZANT M Z, et al. Internal resistance matching for parallel-connected lithium-ion cells and impacts on battery pack cycle life[J]. Journal of Power Sources, 2014, 252: 8-13.
LI T, LIN C T, CHEN Q S. Inconsistency analysis of LiFePO4 battery packing[J]. Journal of Tsinghua University (Science and Technology), 2012, 52(7): 1001-1006.
MIYATAKE S, SUSUKI Y, HIKIHARA T, et al. Discharge characteristics of multicell lithium-ion battery with nonuniform cells[J]. Journal of Power Sources, 2013, 241: 736-743.