Lithium-ion batteries are complex systems containing multiscale and multiphysical fields. Electrochemical simulations can describe the chemical and physical processes in batteries, providing theoretical support for the optimization of battery systems and their design to reduce the time and costs related to battery development. This article summarizes electrochemical models and their derived models, including single-particle, pseudo-two-dimensional, three-dimensional, and mesoscale models. This study also introduces several parameter acquisition methods. Additionally, the applications of electrochemical models in internal temperature and stress analysis, aging simulation, and microstructure design of lithium-ion batteries are summarized. Based on electrochemical models, the distributions of lithium ions, potential, and reaction rate in battery electrolyte and electrodes are studied. Furthermore, an electrochemical model coupled with multiphysical fields is introduced to simulate the temperature and stress distributions in cells and predict the degradation of cells during cycling. The effects of microstructure and various parameters on battery performance are investigated using the microcosmic electrochemical model to guide electrode structure design. In summary, electrochemical models have great advantages for analyzing the internal mechanisms of batteries. Finally, directions for future research on electrochemical models for lithium-ion batteries are suggested.
Keywords:lithium-ion battery
;
electrochemical model
;
temperature and stress distribution
;
battery aging
;
electrode structure
ZAN Wenda. Development and application of electrochemical models for lithium-ion batteries[J]. Energy Storage Science and Technology, 2023, 12(7): 2302-2318
随着经济和技术的发展,人们对能源的需求大大增加,使用储能系统推动可再生能源的应用变得十分重要。以电池为基础的储能装置是目前最重要的可再生能源储能系统之一。锂离子电池(lithium ion battery,LIB)具有高能量和高功率密度、高能量效率以及低成本等优点,因此成为最为广泛应用的二次电池系统[1-2]。锂离子电池是一个复杂的多尺度、多物理场系统,包含多种电化学反应、质量传输与电荷传输过程。并且锂离子电池在应用中面临复杂多样的各种问题,例如使用过程中电池出现退化失效现象、热失控短路安全问题等。
电化学模型中最经典的是Doyle[6]提出的准二维电化学模型(pseudo two dimensional model,P2D model)。该模型存在两个维度,一个在厚度方向上,并在此维度包含三个部分:正极、隔膜和负极。另一个维度是径向的维度,模型将电极活性材料假设为理想的均匀球体颗粒,采用菲克定律在颗粒径向方向进行求解。P2D模型应用十分广泛,不仅可以模拟电池内部、外部特性,还可以与其他物理场进行耦合,进行热特性和应力的仿真模拟。此外,模型在电池老化、安全分析上也有不同程度的应用[7]。
电解质和电极的浓度梯度可视化不仅有助于电极设计,对提升电池高倍率放电性能也十分重要。研究人员利用P2D模型对此做了广泛研究。Jiang等人[20]模拟了恒流放电下不同时刻电池厚度方向的锂离子浓度变化。对电池模型施加电流后,电解液中的锂离子浓度梯度迅速变化,并且负极区域中的Li+浓度高于正极区域中的浓度[图4(a)]。图4(b)显示了负极荷电状态(state of charge,SOC)和正极放电深度(depth of discharge,DOD)随放电时刻的变化,发现负极的放电程度更不均匀。可以观察到,由于反应速率的不均匀,电极厚度上出现锂离子浓度梯度,这是P2D模型的优势。此外,锂离子在活性物质颗粒内部的扩散也会导致颗粒内部的浓度梯度。电极和电解质中的浓度差异受到传输参数的影响,可以通过电化学模型对其进行仿真模拟。
Fig. 4
(a) Li+ concentration gradient in electrolyte during constant current (0.1 C) discharge; (b) The state of charge distribution in the negative electrode and the discharge depth distribution in the positive electrode during constant current (0.1 C) discharge
Fig. 6
(a) 2D temperature distribution of flexible battery at the end of discharge at 5 ℃, simulation (left) and experiment (right); (b) 3D simulation of the temperature distribution inside the cylindrical battery at the end of charging (left) and discharging (right) at 5 ℃; (c) The effect of different needle speed on thermal runaway of batteries; (d) The effect of different needle diameters on thermal runaway of batteries; (e) Current density distribution of 18650 battery under single pole lug setting; (f) Current density distribution of 18650 battery in bipolar lug setting
Fig. 7
(a) Schematic diagram of particle expansion (left) and contraction (right) during lithiation and delithiation processes; (b) The stress on the surface of particles of anodes at the end of discharge with different rates; (c) Lithium concentration distribution of carbon coated particles and hollow spherical particles during lithification; (d) Lithium ion concentration distribution in cathode particles with mesoscale model
电池的充放电过程伴随着内部一些副反应和活性颗粒破裂等机械问题。随着电池使用时间和循环次数的增加,这些因素会导致电池性能退化。因此,了解电池的老化机理,寻求改良方案变得十分重要。整体来说,电池的老化因素可以分成两类:锂损失和活性材料损失(loss of active materials,LAM)[36-37]。一方面,电解质和活性颗粒表面发生反应形成固体电解质界面膜(solid-electrolyte-interface,SEI膜)以及析锂等副反应的发生会消耗活性锂,影响电池性能;另一方面,活性物质破裂、电接触损失等都会影响电池充放电性能。
Fig. 8
(a) The loss of capacity caused by SEI formation (brown area) and lithium plating (blue area) during long-term cycling; (b) Nonlinear loss of capacity during long-term cycling; (c) The three-dimensional reconstruction model of NCM cathode with CEI film; (d) The variation of electric potential along the thickness direction with different thicknesses of CEI film and blockage degrees; (e) The variation of lithium ion concentration along the thickness direction with different thicknesses of CEI film and blockage degrees
Fig. 10
(a), (b) Particle fracture and interface debonding images of NMC electrodes after cycling; (c) Simulation of particle rupture at different discharge depths; (d) Simulation of different CBD phase morphologies in reconstructed models
Fig. 11
(a) Micro Structure of electrodes developed with LAMMPS; (b) Raw 2D tomography image of electrode with X-ray tomography; (c) 3D microstructures of porous electrodes
Fig. 12
(a) Discharge simulation of three-dimensional reconstruction models with different slurry ratios; (b) Simulation of the drying process of NCM cathode; (c), (d) Simulation of compaction process of NCM cathode
Fig. 13
(a) Morphological control of three-dimensional reconstruction models; (b) Discharge simulation of three-dimensional reconstruction models with adjusted porosity; (c)-(d) Discharge simulation of reconstruction models with different thicknesses; (e) The effects of porosity and electrode thickness on capacity
KIM T, SONG W T, SON D Y, et al. Lithium-ion batteries: Outlook on present, future, and hybridized technologies[J]. Journal of Materials Chemistry A, 2019, 7(7): 2942-2964.
NEJAD S, GLADWIN D T, STONE D A. A systematic review of lumped-parameter equivalent circuit models for real-time estimation of lithium-ion battery states[J]. Journal of Power Sources, 2016, 316: 183-196.
MENG J H, LUO G Z, RICCO M, et al. Overview of lithium-ion battery modeling methods for state-of-charge estimation in electrical vehicles[J]. Applied Sciences, 2018, 8(5): 659.
BERGVELD H J, KRUIJT W S, NOTTEN P H L. Electronic-network modelling of rechargeable NiCd cells and its application to the design of battery management systems[J]. Journal of Power Sources, 1999, 77(2): 143-158.
DOYLE M, NEWMAN J, GOZDZ A S, et al. Comparison of modeling predictions with experimental data from plastic lithium ion cells[J]. Journal of the Electrochemical Society, 1996, 143(6): 1890-1903.
YANG D H, WU X Z, WANG Y P, et al. Overview of electrochemical simulation technology for lithium ion batteries[J]. Energy Storage Science and Technology, 2021, 10(3): 1060-1070.
CHENG Y, LI J, JIA M, et al. Application status and future of multi-scale numerical models for lithium ion battery[J]. Acta Physica Sinica, 2015, 64(21): 145-160.
NEWMAN J S, TOBIAS C W. Theoretical analysis of current distribution in porous electrodes[J]. Journal of the Electrochemical Society, 1962, 109(12): 1183.
CHEN Z Q, DANILOV D L, EICHEL R A, et al. Porous electrode modeling and its applications to Li-ion batteries[J]. Advanced Energy Materials, 2022, 12(32): doi: 10.1002/aenm.202201506.
DU S L, LAI Y Q, AI L, et al. An investigation of irreversible heat generation in lithium ion batteries based on a thermo-electrochemical coupling method[J]. Applied Thermal Engineering, 2017, 121: 501-510.
ZHANG X C, SHYY W, MARIE SASTRY A. Numerical simulation of intercalation-induced stress in Li-ion battery electrode particles[J]. Journal of the Electrochemical Society, 2007, 154(10): A910.
SHAO S X, ZHU Z D, PENG W. The study on reaction rate constant of electrode materials in lithium ion batteries[J]. Chinese Battery Industry, 2020, 24(4): 179-183.
SHAO S X, ZHU Z D, WANG R R, et al. Characterizing diffusion coefficient of electrode materials by three methods[J]. Battery Bimonthly, 2021, 51(6): 577-581.
JIANG F M, PENG P. Elucidating the performance limitations of lithium-ion batteries due to species and charge transport through five characteristic parameters[J]. Scientific Reports, 2016, 6: doi: 10.1038/srep32639.
MALIFARGE S, DELOBEL B, DELACOURT C. Experimental and modeling analysis of graphite electrodes with various thicknesses and porosities for high-energy-density Li-ion batteries[J]. Journal of the Electrochemical Society, 2018, 165(7): A1275-A1287.
COLCLASURE A M, TANIM T R, JANSEN A N, et al. Electrode scale and electrolyte transport effects on extreme fast charging of lithium-ion cells[J]. Electrochimica Acta, 2020, 337: doi: 10.1016/j.electacta.2020.135854.
XU M, REICHMAN B, WANG X. Modeling the effect of electrode thickness on the performance of lithium-ion batteries with experimental validation[J]. Energy, 2019, 186: doi: 10.1016/j.energy.2019.115864.
GOUTAM S, NIKOLIAN A, JAGUEMONT J, et al. Three-dimensional electro-thermal model of li-ion pouch cell: Analysis and comparison of cell design factors and model assumptions[J]. Applied Thermal Engineering, 2017, 126: 796-808.
SAW L H, YE Y H, TAY A A O. Electrochemical-thermal analysis of 18650 Lithium Iron Phosphate cell[J]. Energy Conversion and Management, 2013, 75: 162-174.
MEI W X, LIANG C, SUN J H, et al. Three-dimensional layered electrochemical-thermal model for a lithium-ion pouch cell[J]. International Journal of Energy Research, 2020, 44(11): 8919-8935.
TRANTER T G, TIMMS R, HEENAN T M M, et al. Probing heterogeneity in Li-ion batteries with coupled multiscale models of electrochemistry and thermal transport using tomographic domains[J]. Journal of the Electrochemical Society, 2020, 167(11): doi: 10.1149/1945-7111/aba44b.
FENG X N, LU L G, OUYANG M G, et al. A 3D thermal runaway propagation model for a large format lithium ion battery module[J]. Energy, 2016, 115: 194-208.
CHRISTENSEN J, NEWMAN J. Stress generation and fracture in lithium insertion materials[J]. Journal of Solid State Electrochemistry, 2006, 10(5): 293-319.
RENGANATHAN S, SIKHA G, SANTHANAGOPALAN S, et al. Theoretical analysis of stresses in a lithium ion cell[J]. Journal of the Electrochemical Society, 2010, 157(2): A155.
SUN F N, FENG L, BU J H, et al. Effect of stress on electrochemical performance of hollow carbon-coated silicon snode in lithium ion batteries[J]. Acta Physica Sinica, 2019, 68(12): 120201.
MAI W J, YANG M, SOGHRATI S. A particle-resolved 3D finite element model to study the effect of cathode microstructure on the behavior of lithium ion batteries[J]. Electrochimica Acta, 2019, 294: 192-209.
PASTOR-FERNÁNDEZ C, UDDIN K, CHOUCHELAMANE G H, et al. A comparison between electrochemical impedance spectroscopy and incremental capacity-differential voltage as Li-ion diagnostic techniques to identify and quantify the effects of degradation modes within battery management systems[J]. Journal of Power Sources, 2017, 360: 301-318.
YANG X G, LENG Y J, ZHANG G S, et al. Modeling of lithium plating induced aging of lithium-ion batteries: Transition from linear to nonlinear aging[J]. Journal of Power Sources, 2017, 360: 28-40.
NAUMANN M, SPINGLER F B, JOSSEN A. Analysis and modeling of cycle aging of a commercial LiFePO4/graphite cell[J]. Journal of Power Sources, 2020, 451: doi: 10.1016/j.jpowsour.2019.227666.
KEIL J, JOSSEN A. Electrochemical modeling of linear and nonlinear aging of lithium-ion cells[J]. Journal of the Electrochemical Society, 2020, 167(11): doi: 10.1149/1945-7111/aba44f.
ZHANG M H, CHOUCHANE M, ALI SHOJAEE S, et al. Coupling of multiscale imaging analysis and computational modeling for understanding thick cathode degradation mechanisms[J]. Joule, 2023, 7(1): 201-220.
KINDERMANN F M, KEIL J, FRANK A, et al. A SEI modeling approach distinguishing between capacity and power fade[J]. Journal of the Electrochemical Society, 2017, 164(12): E287-E294.
XU R, YANG Y, YIN F, et al. Heterogeneous damage in Li-ion batteries: Experimental analysis and theoretical modeling[J]. Journal of the Mechanics and Physics of Solids, 2019, 129: 160-183.
LIU P F, XU R, LIU Y J, et al. Computational modeling of heterogeneity of stress, charge, and cyclic damage in composite electrodes of Li-ion batteries[J]. Journal of the Electrochemical Society, 2020, 167(4): doi: 10.1149/1945-7111/ab78fa.
BOYCE A M, MARTÍNEZ-PAÑEDA E, WADE A, et al. Cracking predictions of lithium-ion battery electrodes by X-ray computed tomography and modelling[J]. Journal of Power Sources, 2022, 526: doi: 10.1016/j.jpowsour.2022.231119.
CHOUCHANE M, FRANCO A A. Deconvoluting the impacts of the active material skeleton and the inactive phase morphology on the performance of lithium ion battery electrodes[J]. Energy Storage Materials, 2022, 47: 649-655.
LIU C Y, LOMBARDO T, XU J H, et al. An experimentally-validated 3D electrochemical model revealing electrode manufacturing parameters' effects on battery performance[J]. Energy Storage Materials, 2023, 54: 156-163.
BOYCE A M, LU X K, BRETT D J L, et al. Exploring the influence of porosity and thickness on lithium-ion battery electrodes using an image-based model[J]. Journal of Power Sources, 2022, 542: doi: 10.1016/j.jpowsour.2022.231779.
LOMBARDO T, NGANDJONG A C, BELHCEN A, et al. Carbon-binder migration: A three-dimensional drying model for lithium-ion battery electrodes[J]. Energy Storage Materials, 2021, 43: 337-347.
NGANDJONG A C, LOMBARDO T, PRIMO E N, et al. Investigating electrode calendering and its impact on electrochemical performance by means of a new discrete element method model: Towards a digital twin of Li-Ion battery manufacturing[J]. Journal of Power Sources, 2021, 485: doi: 10.1016/j.jpowsour.2020.229320.
LU X K, BERTEI A, FINEGAN D P, et al. 3D microstructure design of lithium-ion battery electrodes assisted by X-ray nano-computed tomography and modelling[J]. Nature Communications, 2020, 11: 2079.
DI DOMENICO D, STEFANOPOULOU A, FIENGO G. Lithium-ion battery state of charge and critical surface charge estimation using an electrochemical model-based extended Kalman filter[J]. Journal of Dynamic Systems, Measurement, and Control, 2010, 132(6): 1.
LI W H, FAN Y, RINGBECK F, et al. Electrochemical model-based state estimation for lithium-ion batteries with adaptive unscented Kalman filter[J]. Journal of Power Sources, 2020, 476: doi: 10.1016/j.jpowsour.2020.228534.
FATHIANNASAB H, GHORBANI KASHKOOLI A, LI T Y, et al. Three-dimensional modeling of all-solid-state lithium-ion batteries using synchrotron transmission X-ray microscopy tomography[J]. Journal of the Electrochemical Society, 2020, 167(10): doi: 10.1149/1945-7111/ab9380.
FATHIANNASAB H, ZHU L K, CHEN Z W. Chemo-mechanical modeling of stress evolution in all-solid-state lithium-ion batteries using synchrotron transmission X-ray microscopy tomography[J]. Journal of Power Sources, 2021, 483: doi: 10.1016/j.jpowsour. 2020.229028.
... 随着经济和技术的发展,人们对能源的需求大大增加,使用储能系统推动可再生能源的应用变得十分重要.以电池为基础的储能装置是目前最重要的可再生能源储能系统之一.锂离子电池(lithium ion battery,LIB)具有高能量和高功率密度、高能量效率以及低成本等优点,因此成为最为广泛应用的二次电池系统[1-2].锂离子电池是一个复杂的多尺度、多物理场系统,包含多种电化学反应、质量传输与电荷传输过程.并且锂离子电池在应用中面临复杂多样的各种问题,例如使用过程中电池出现退化失效现象、热失控短路安全问题等. ...
1
... 随着经济和技术的发展,人们对能源的需求大大增加,使用储能系统推动可再生能源的应用变得十分重要.以电池为基础的储能装置是目前最重要的可再生能源储能系统之一.锂离子电池(lithium ion battery,LIB)具有高能量和高功率密度、高能量效率以及低成本等优点,因此成为最为广泛应用的二次电池系统[1-2].锂离子电池是一个复杂的多尺度、多物理场系统,包含多种电化学反应、质量传输与电荷传输过程.并且锂离子电池在应用中面临复杂多样的各种问题,例如使用过程中电池出现退化失效现象、热失控短路安全问题等. ...
... 电解质和电极的浓度梯度可视化不仅有助于电极设计,对提升电池高倍率放电性能也十分重要.研究人员利用P2D模型对此做了广泛研究.Jiang等人[20]模拟了恒流放电下不同时刻电池厚度方向的锂离子浓度变化.对电池模型施加电流后,电解液中的锂离子浓度梯度迅速变化,并且负极区域中的Li+浓度高于正极区域中的浓度[图4(a)].图4(b)显示了负极荷电状态(state of charge,SOC)和正极放电深度(depth of discharge,DOD)随放电时刻的变化,发现负极的放电程度更不均匀.可以观察到,由于反应速率的不均匀,电极厚度上出现锂离子浓度梯度,这是P2D模型的优势.此外,锂离子在活性物质颗粒内部的扩散也会导致颗粒内部的浓度梯度.电极和电解质中的浓度差异受到传输参数的影响,可以通过电化学模型对其进行仿真模拟. ...
... 电池的充放电过程伴随着内部一些副反应和活性颗粒破裂等机械问题.随着电池使用时间和循环次数的增加,这些因素会导致电池性能退化.因此,了解电池的老化机理,寻求改良方案变得十分重要.整体来说,电池的老化因素可以分成两类:锂损失和活性材料损失(loss of active materials,LAM)[36-37].一方面,电解质和活性颗粒表面发生反应形成固体电解质界面膜(solid-electrolyte-interface,SEI膜)以及析锂等副反应的发生会消耗活性锂,影响电池性能;另一方面,活性物质破裂、电接触损失等都会影响电池充放电性能. ...
1
... 电池的充放电过程伴随着内部一些副反应和活性颗粒破裂等机械问题.随着电池使用时间和循环次数的增加,这些因素会导致电池性能退化.因此,了解电池的老化机理,寻求改良方案变得十分重要.整体来说,电池的老化因素可以分成两类:锂损失和活性材料损失(loss of active materials,LAM)[36-37].一方面,电解质和活性颗粒表面发生反应形成固体电解质界面膜(solid-electrolyte-interface,SEI膜)以及析锂等副反应的发生会消耗活性锂,影响电池性能;另一方面,活性物质破裂、电接触损失等都会影响电池充放电性能. ...