The macroscopic-scale numerical simulation method can simulate solid oxide fuel cells (SOFCs) by coupling multiple physical fields. It has advantages in studying the internal mechanism and external output performance of SOFCs, providing a basis for the optimization design of cells. The gas flow uniformity inside SOFCs directly affects the battery's efficiency, and the thermal field distribution will affect the power generation performance and long-term stability of the battery. This paper summarizes the research progress of the influence of the internal flow channel and external manifold of SOFCs on the flow field, optimization of the traditional flow channel, and design of a new flow channel, and macroscopic-scale numerical simulation in heat transport and thermal stability. Furthermore, the research progress of macroscopic-scale numerical simulation in analyzing fuel efficiency, coupled multiscale model, and designing SOFC components and new structures are reviewed. The application of macroscopic numerical simulation methods in studying SOFCs is summarized and prospected. It is considered necessary to unify the evaluation criteria of SOFC structure design for quantitative comparison.
LUAN Kaifu. Research progress of macroscale numerical simulation of fluid and thermal fields of solid oxide fuel cells[J]. Energy Storage Science and Technology, 2023, 12(9): 2985-3002
Fig. 1
Geometric model of SOFC: (a) 2D model of ethanol SOFC[29]; (b) 2D model of tubular SOFC[30]; (c) Staggered single channel model[31]; (d) 3D model of tubular SOFC cell[32]; (e) 3D model of flat panel SOFC cell[33]; (f) 3D model of SOFC with double-sided cathodes[34]; (g) 3D model of panel SOFC stack[35]; (h) 3D model of tubular SOFC stack[36]
模型假设需根据具体情况确定,一般包括设置为稳态或瞬态,视气体流速和压力情况而设定为层流或湍流,气体混合物均视为理想气体,热边界条件假设,是否忽略SOFC内的热辐射等。对于边界条件的设定,通过求解软件以及添加用户自定义函数(user define function,UDF),可以准确地设定边界条件。目前最为常用的CFD商用软件COMSOL和ANSYS Fluent分别采用有限元法(finite element method,FEM)和有限体积法(finite volume method, FVM)在宏观尺度上对SOFC模型的边界条件进行求解[16]。
Fig. 2
Schematic diagram of the charge and gas transport paths within the electrodes[42]: (a) Gas transport paths in typical support designs; (b) Electric current conducting paths in typical support designs; (c) Gas transport paths in ACSC; (d) Electric current conducting paths in ACSC
Fig. 3
Distribution of electric potential in cathode and the output average current density[42]: (a) Distribution of electric potential in cathode of the ASC; (b) Distribution of electric potential in cathode of the ACSC; (c) The effect of the output voltage on the average current density
Fig. 13
Planar-type SOFC[61]: (a) Temperature gradient along the flow direction for co-flow and counter-flow; (b) Von Mises stress along the direction of the co-flow and counter-flow; (c) The first and third principal stresses of the co-flow; (d) The first principal stress of the air inlet and the fuel inlet under free constraints in the counter-flow; (e) The first and third principal stresses of the counter-flow; (f) Counter-flow, first principal stress at the electrolyte-electrode interface under free confinement
NI D W, CHARLAS B, KWOK K, et al. Influence of temperature and atmosphere on the strength and elastic modulus of solid oxide fuel cell anode supports[J]. Journal of Power Sources, 2016, 311: 1-12.
WU Y H, LIU H K, WANG Y F, et al. Spatially resolved electrochemical performance and temperature distribution of a segmented solid oxide fuel cell under various hydrogen dilution ratios and electrical loadings[J]. Journal of Power Sources, 2022, 536: 231477.
KHALEEL M A, LIN Z, SINGH P, et al. A finite element analysis modeling tool for solid oxide fuel cell development: Coupled electrochemistry, thermal and flow analysis in MARC®[J]. Journal of Power Sources, 2004, 130(1/2): 136-148.
SINGH M, ZAPPA D, COMINI E. Solid oxide fuel cell: Decade of progress, future perspectives and challenges[J]. International Journal of Hydrogen Energy, 2021, 46(54): 27643-27674.
PETRUZZI L, COCCHI S, FINESCHI F. A global thermo-electrochemical model for SOFC systems design and engineering[J]. Journal of Power Sources, 2003, 118(1/2): 96-107.
KHAN M Z, ILTAF A, AHMAD ISHFAQ H, et al. Flat-tubular solid oxide fuel cells and stacks: A review[J]. Journal of Asian Ceramic Societies, 2021, 9(3): 745-770.
TIKIZ I, TAYMAZ I, PEHLIVAN H. CFD modelling and experimental validation of cell performance in a 3-D planar SOFC[J]. International Journal of Hydrogen Energy, 2019, 44(29): 15441-15455.
FANG X R, LIN Z J. Numerical study on the mechanical stress and mechanical failure of planar solid oxide fuel cell[J]. Applied Energy, 2018, 229: 63-68.
TAKINO K, TACHIKAWA Y, MORI K, et al. Simulation of SOFC performance using a modified exchange current density for pre-reformed methane-based fuels[J]. International Journal of Hydrogen Energy, 2020, 45(11): 6912-6925.
PIANKO-OPRYCH P, ZINKO T, JAWORSKI Z. Simulation of thermal stresses for new designs of microtubular solid oxide fuel cell stack[J]. International Journal of Hydrogen Energy, 2015, 40(42): 14584-14595.
YANG C, WANG J T, ZHAO J P, et al. CFD modeling and performance comparison of solid oxide fuel cell and electrolysis cell fueled with syngas[J]. International Journal of Energy Research, 2019, 43(7): 2656-2677.
XENOS D P, HOFMANN P, PANOPOULOS K D, et al. Detailed transient thermal simulation of a planar SOFC (solid oxide fuel cell) using gPROMS™[J]. Energy, 2015, 81: 84-102.
ILBAS M, ALEMU M A, CIMEN F M. Comparative performance analysis of a direct ammonia-fuelled anode supported flat tubular solid oxide fuel cell: A 3D numerical study[J]. International Journal of Hydrogen Energy, 2022, 47(5): 3416-3428.
ANDERSSON M, YUAN J L, SUNDÉN B. Review on modeling development for multiscale chemical reactions coupled transport phenomena in solid oxide fuel cells[J]. Applied Energy, 2010, 87(5): 1461-1476.
CELIK S, IBRAHIMOGLU B, MAT M D, et al. Micro level two dimensional stress and thermal analysis anode/electrolyte interface of a solid oxide fuel cell[J]. International Journal of Hydrogen Energy, 2015, 40(24): 7895-7902.
LU X K, BERTEI A, HEENAN T M M, et al. Multi-length scale microstructural design of micro-tubular solid oxide fuel cells for optimised power density and mechanical robustness[J]. Journal of Power Sources, 2019, 434: 226744.
PEKSEN M. A coupled 3D thermofluid-thermomechanical analysis of a planar type production scale SOFC stack[J]. International Journal of Hydrogen Energy, 2011, 36(18): 11914-11928.
CHIANG L K, LIU H C, SHIU Y H, et al. Thermo-electrochemical and thermal stress analysis for an anode-supported SOFC cell[J]. Renewable Energy, 2008, 33(12): 2580-2588.
MORTADA M, RAMADAN H S, FARAJ J, et al. Impacts of reactant flow nonuniformity on fuel cell performance and scaling-up: Comprehensive review, critical analysis and potential recommendations[J]. International Journal of Hydrogen Energy, 2021, 46(63): 32161-32191.
AMIRI A, VIJAY P, TADÉ M O, et al. Planar SOFC system modelling and simulation including a 3D stack module[J]. International Journal of Hydrogen Energy, 2016, 41(4): 2919-2930.
HE Z J, LI H, BIRGERSSON E. Correlating variability of modeling parameters with non-isothermal stack performance: Monte Carlo simulation of a portable 3D planar solid oxide fuel cell stack[J]. Applied Energy, 2014, 136: 560-575.
CHOROOMZADEH M, KHAZAEE I. Significance of aspect ratio parameter on a solid oxide fuel cell with rectangular, trapezoidal, and triangular obstacles in the flow channel[J]. Arabian Journal for Science and Engineering, 2023, 48(7): 8595-8611.
MA R, GAO F, BREAZ E, et al. Multidimensional reversible solid oxide fuel cell modeling for embedded applications[J]. IEEE Transactions on Energy Conversion, 2018, 33(2): 692-701.
TSERONIS K, BONIS I, KOOKOS I K, et al. Parametric and transient analysis of non-isothermal, planar solid oxide fuel cells[J]. International Journal of Hydrogen Energy, 2012, 37(1): 530-547.
HAO C K, ZENG Z Z, ZHAO B G, et al. Local heat generation management for temperature gradient reduction in tubular solid oxide fuel cells[J]. Applied Thermal Engineering, 2022, 211: 118453.
LEE S, PARK M, KIM H, et al. Thermal conditions and heat transfer characteristics of high-temperature solid oxide fuel cells investigated by three-dimensional numerical simulations[J]. Energy, 2017, 120: 293-305.
GARI A A, AHMED K I, AHMED M H. Performance and thermal stress of tubular functionally graded solid oxide fuel cells[J]. Energy Reports, 2021, 7: 6413-6421.
GUO M T, LIN Z J. Long-term evolution of mechanical performance of solid oxide fuel cell stack and the underlying mechanism[J]. International Journal of Hydrogen Energy, 2021, 46(47): 24293-24304.
JIANG C Y, GU Y C, GUAN W B, et al. 3D thermo-electro-chemo-mechanical coupled modeling of solid oxide fuel cell with double-sided cathodes[J]. International Journal of Hydrogen Energy, 2020, 45(1): 904-915.
CHEN D F, DING K, CHEN Z Y, et al. Physics field distributions within fuel cell stacks with manifolds penetrating through the plane zone and open outlet features[J]. Energy Conversion and Management, 2018, 178: 190-199.
CHEN D F, XU Y, HU B, et al. Investigation of proper external air flow path for tubular fuel cell stacks with an anode support feature[J]. Energy Conversion and Management, 2018, 171: 807-814.
CHEN D F, ZENG Q C, SU S C, et al. Geometric optimization of a 10-cell modular planar solid oxide fuel cell stack manifold[J]. Applied Energy, 2013, 112: 1100-1107.
KHODABANDEH E, ALI AKBARI O, AKBARI S, et al. The effects of oil/MWCNT nanofluids and geometries on the solid oxide fuel cell cooling systems: A CFD study[J]. Journal of Thermal Analysis and Calorimetry, 2021, 144(1): 245-256.
CHELMEHSARA M E, MAHMOUDIMEHR J. Techno-economic comparison of anode-supported, cathode-supported, and electrolyte-supported SOFCs[J]. International Journal of Hydrogen Energy, 2018, 43(32): 15521-15530.
CHEN Q Y, WANG Q W, ZHANG J, et al. Effect of bi-layer interconnector design on mass transfer performance in porous anode of solid oxide fuel cells[J]. International Journal of Heat and Mass Transfer, 2011, 54(9/10): 1994-2003.
FAN S L, ZHU P L, LIU Y, et al. Three-dimensional structure research of anode-supported planar solid oxide fuel cells[J]. Journal of Energy Engineering, 2022, 148(3): 4022010.1-12.
SU S C, ZHANG Q, GAO X, et al. Effects of changes in solid oxide fuel cell electrode thickness on ohmic and concentration polarizations[J]. International Journal of Hydrogen Energy, 2016, 41(36): 16181-16190.
HESAMI H, BORJI M, REZAPOUR J. Three-dimensional numerical investigation on the effect of interconnect design on the performance of internal reforming planar solid oxide fuel cell[J]. Korean Journal of Chemical Engineering, 2021, 38(12): 2423-2435.
ZHANG Z G, YUE D T, YANG G G, et al. Three-dimensional CFD modeling of transport phenomena in multi-channel anode-supported planar SOFCs[J]. International Journal of Heat and Mass Transfer, 2015, 84: 942-954.
LIN B, SHI Y X, NI M, et al. Numerical investigation on impacts on fuel velocity distribution nonuniformity among solid oxide fuel cell unit channels[J]. International Journal of Hydrogen Energy, 2015, 40(7): 3035-3047.
DUHN J D, JENSEN A D, WEDEL S, et al. Optimization of a new flow design for solid oxide cells using computational fluid dynamics modelling[J]. Journal of Power Sources, 2016, 336: 261-271.
ZOU Y T, LI J, ZHANG J Q, et al. Simulation of two types fuel cell stack models to investigate the relationship between air flow distribution and structure[J]. Ionics, 2019, 25(10): 4851-4859.
SU S C, HE H H, CHEN D F, et al. Flow distribution analyzing for the solid oxide fuel cell short stacks with rectangular and discrete cylindrical rib configurations[J]. International Journal of Hydrogen Energy, 2015, 40(1): 577-592.
RASHID K, DONG S K, ALI KHAN R, et al. Optimization of manifold design for 1 kW-class flat-tubular solid oxide fuel cell stack operating on reformed natural gas[J]. Journal of Power Sources, 2016, 327: 638-652.
ZHAO C, YANG J J, ZHANG T, et al. Numerical simulation of flow distribution for external manifold design in solid oxide fuel cell stack[J]. International Journal of Hydrogen Energy, 2017, 42(10): 7003-7013.
DONG J, XU X H, XU B. CFD analysis of a novel modular manifold with multi-stage channels for uniform air distribution in a fuel cell stack[J]. Applied Thermal Engineering, 2017, 124: 286-293.
KONG W, ZHANG W X, ZHANG S D, et al. Residual stress analysis of a micro-tubular solid oxide fuel cell[J]. International Journal of Hydrogen Energy, 2016, 41(36): 16173-16180.
BAEK S M, JEONG A, NAM J H, et al. Three-dimensional micro/macroscale simulation of planar, anode-supported, intermediate-temperature solid oxide fuel cells: I. Model development for hydrogen fueled operation[J]. International Journal of Hydrogen Energy, 2019, 44(29): 15456-15481.
LEE S, BAE Y, YOON K J, et al. Key characteristics of a hydrocarbon-fueled solid oxide fuel cell examined by local thermodynamic states[J]. Energy Conversion and Management, 2018, 174: 565-578.
ZENG M, YUAN J L, ZHANG J, et al. Investigation of thermal radiation effects on solid oxide fuel cell performance by a comprehensive model[J]. Journal of Power Sources, 2012, 206: 185-196.
LIN B, SHI Y X, CAI N S. Numerical simulation of cell-to-cell performance variation within a syngas-fuelled planar solid oxide fuel cell stack[J]. Applied Thermal Engineering, 2017, 114: 653-662.
KIM D H, BAE Y, LEE S, et al. Thermal analysis of a 1-kW hydrogen-fueled solid oxide fuel cell stack by three-dimensional numerical simulation[J]. Energy Conversion and Management, 2020, doi: 10.1016/j.enconman.2020.113213.
ZHENG K Q, KUANG Y, RAO Z H, et al. Numerical study on the effect of bi-polar plate geometry in the SOFC heating-up process[J]. Journal of Renewable and Sustainable Energy, 2019, 11(1): 014301.
AL-MASRI A, PEKSEN M, BLUM L, et al. A 3D CFD model for predicting the temperature distribution in a full scale APU SOFC short stack under transient operating conditions[J]. Applied Energy, 2014, 135: 539-547.
XU M, LI T S, YANG M, et al. Modeling of an anode supported solid oxide fuel cell focusing on thermal stresses[J]. International Journal of Hydrogen Energy, 2016, 41(33): 14927-14940.
PIANKO-OPRYCH P, ZINKO T, JAWORSKI Z. Modeling of thermal stresses in a microtubular solid oxide fuel cell stack[J]. Journal of Power Sources, 2015, 300: 10-23.
SUGIHARA S, IWAI H. Experimental investigation of temperature distribution of planar solid oxide fuel cell: Effects of gas flow, power generation, and direct internal reforming[J]. International Journal of Hydrogen Energy, 2020, 45(46): 25227-25239.
SERINCAN M F, PASAOGULLARI U, SINGH P. Controlling reformation rate for a more uniform temperature distribution in an internal methane steam reforming solid oxide fuel cell[J]. Journal of Power Sources, 2020, 468: 228310.
WANG Y Q, BANERJEE A, WEHRLE L, et al. Performance analysis of a reversible solid oxide cell system based on multi-scale hierarchical solid oxide cell modelling[J]. Energy Conversion and Management, 2019, 196: 484-496.
BABAIE RIZVANDI O, MIAO X Y, FRANDSEN H L. Multiscale modeling of degradation of full solid oxide fuel cell stacks[J]. International Journal of Hydrogen Energy, 2021, 46(54): 27709-27730.
LI J Y, LIN Z J. Effects of electrode composition on the electrochemical performance and mechanical property of micro-tubular solid oxide fuel cell[J]. International Journal of Hydrogen Energy, 2012, 37(17): 12925-12940.
KASHMIRI S A, TAHIR M W, AFZAL U. Combustion modeling and simulation of recycled anode-off-gas from solid oxide fuel cell[J]. Energies, 2020, 13(19): 5186.
SCHLUCKNER C, SUBOTIĆ V, PREIßL S, et al. Numerical analysis of flow configurations and electrical contact positions in SOFC single cells and their impact on local effects[J]. International Journal of Hydrogen Energy, 2019, 44(3): 1877-1895.
... [29]; (b) 2D model of tubular SOFC[30]; (c) Staggered single channel model[31]; (d) 3D model of tubular SOFC cell[32]; (e) 3D model of flat panel SOFC cell[33]; (f) 3D model of SOFC with double-sided cathodes[34]; (g) 3D model of panel SOFC stack[35]; (h) 3D model of tubular SOFC stack[36]Fig. 1
模型假设需根据具体情况确定,一般包括设置为稳态或瞬态,视气体流速和压力情况而设定为层流或湍流,气体混合物均视为理想气体,热边界条件假设,是否忽略SOFC内的热辐射等.对于边界条件的设定,通过求解软件以及添加用户自定义函数(user define function,UDF),可以准确地设定边界条件.目前最为常用的CFD商用软件COMSOL和ANSYS Fluent分别采用有限元法(finite element method,FEM)和有限体积法(finite volume method, FVM)在宏观尺度上对SOFC模型的边界条件进行求解[16]. ...
... [30]; (c) Staggered single channel model[31]; (d) 3D model of tubular SOFC cell[32]; (e) 3D model of flat panel SOFC cell[33]; (f) 3D model of SOFC with double-sided cathodes[34]; (g) 3D model of panel SOFC stack[35]; (h) 3D model of tubular SOFC stack[36]Fig. 1
模型假设需根据具体情况确定,一般包括设置为稳态或瞬态,视气体流速和压力情况而设定为层流或湍流,气体混合物均视为理想气体,热边界条件假设,是否忽略SOFC内的热辐射等.对于边界条件的设定,通过求解软件以及添加用户自定义函数(user define function,UDF),可以准确地设定边界条件.目前最为常用的CFD商用软件COMSOL和ANSYS Fluent分别采用有限元法(finite element method,FEM)和有限体积法(finite volume method, FVM)在宏观尺度上对SOFC模型的边界条件进行求解[16]. ...
... [31]; (d) 3D model of tubular SOFC cell[32]; (e) 3D model of flat panel SOFC cell[33]; (f) 3D model of SOFC with double-sided cathodes[34]; (g) 3D model of panel SOFC stack[35]; (h) 3D model of tubular SOFC stack[36]Fig. 1
模型假设需根据具体情况确定,一般包括设置为稳态或瞬态,视气体流速和压力情况而设定为层流或湍流,气体混合物均视为理想气体,热边界条件假设,是否忽略SOFC内的热辐射等.对于边界条件的设定,通过求解软件以及添加用户自定义函数(user define function,UDF),可以准确地设定边界条件.目前最为常用的CFD商用软件COMSOL和ANSYS Fluent分别采用有限元法(finite element method,FEM)和有限体积法(finite volume method, FVM)在宏观尺度上对SOFC模型的边界条件进行求解[16]. ...
... [32]; (e) 3D model of flat panel SOFC cell[33]; (f) 3D model of SOFC with double-sided cathodes[34]; (g) 3D model of panel SOFC stack[35]; (h) 3D model of tubular SOFC stack[36]Fig. 1
模型假设需根据具体情况确定,一般包括设置为稳态或瞬态,视气体流速和压力情况而设定为层流或湍流,气体混合物均视为理想气体,热边界条件假设,是否忽略SOFC内的热辐射等.对于边界条件的设定,通过求解软件以及添加用户自定义函数(user define function,UDF),可以准确地设定边界条件.目前最为常用的CFD商用软件COMSOL和ANSYS Fluent分别采用有限元法(finite element method,FEM)和有限体积法(finite volume method, FVM)在宏观尺度上对SOFC模型的边界条件进行求解[16]. ...
... (a) ASC设计中的气体输送路径;(b) ASC设计中的电流导电路径;(c) ACSC中的气体输送路径;(d) ACSC中的电流导电路径Schematic diagram of the charge and gas transport paths within the electrodes[42]: (a) Gas transport paths in typical support designs; (b) Electric current conducting paths in typical support designs; (c) Gas transport paths in ACSC; (d) Electric current conducting paths in ACSCFig. 2
... (a) ASC阴极内电势分布;(b) ACSC阴极内电势分布;(c) 输出电压对平均电流密度的影响Distribution of electric potential in cathode and the output average current density[42]: (a) Distribution of electric potential in cathode of the ASC; (b) Distribution of electric potential in cathode of the ACSC; (c) The effect of the output voltage on the average current densityFig. 32.2 内部流场
... (a) 阳极支撑结构;(b) 不同截面形状的气流通道Flow channels of planar-type SOFC[43]: (a) Schematics of an anode-supported; (b) Schematic of different flow channel cross section shapeFig. 4
... (a) U形流道示意图与氧气摩尔分数分布;(b) Z形流道示意图与氧气摩尔分数分布Air-side[47]: (a) U-type configuration of air flow path on stack level; (b) Z-type configuration of air flow path on stack levelFig. 8
... (a) 共流与逆流配置沿流向的温度梯度;(b) 共流与逆流配置沿流向的冯氏应力;(c) 共流配置的第一和第三主应力;(d) 逆流配置,自由约束下空气入口和燃料入口的第一主应力;(e) 逆流配置的第一和第三主应力;(f) 逆流配置,自由约束下电解质-电极界面的第一主应力Planar-type SOFC[61]: (a) Temperature gradient along the flow direction for co-flow and counter-flow; (b) Von Mises stress along the direction of the co-flow and counter-flow; (c) The first and third principal stresses of the co-flow; (d) The first principal stress of the air inlet and the fuel inlet under free constraints in the counter-flow; (e) The first and third principal stresses of the counter-flow; (f) Counter-flow, first principal stress at the electrolyte-electrode interface under free confinementFig. 13