储能科学与技术 ›› 2023, Vol. 12 ›› Issue (9): 2985-3002.doi: 10.19799/j.cnki.2095-4239.2023.0303
栾凯夫1,2,3(), 蔡长焜1,2,3, 谢满意1,2,3, 张纯1,2,3, 郑坤灿4, 安胜利1,2,3()
收稿日期:
2023-05-04
修回日期:
2023-06-23
出版日期:
2023-09-05
发布日期:
2023-09-16
通讯作者:
安胜利
E-mail:luankf97@163.com;shengli_an@126.com
作者简介:
栾凯夫(1997—),男,硕士研究生,研究方向为固体氧化物燃料电池,E-mail:luankf97@163.com;
基金资助:
Kaifu LUAN1,2,3(), Changkun CAI1,2,3, Manyi XIE1,2,3, Chun ZHANG1,2,3, Kuncan ZHENG4, Shengli AN1,2,3()
Received:
2023-05-04
Revised:
2023-06-23
Online:
2023-09-05
Published:
2023-09-16
Contact:
Shengli AN
E-mail:luankf97@163.com;shengli_an@126.com
摘要:
宏观数值仿真方法通过耦合多个物理场可对固体氧化物燃料电池(solid oxide fuel cell,SOFC)进行仿真,在研究SOFC内部机理、外部输出性能等方面存在优势,可为电池优化设计提供依据。SOFC内部气体流动的均匀性直接影响电池效率,热场的分布会影响电池的发电性能和长期稳定性。本文总结了SOFC内部流道、外部歧管对流场的影响、优化传统流道以及设计新型流道中的宏观数值仿真模拟,以及宏观尺度数值仿真在热量传输和热稳定性方面的研究进展;概括了宏观数值模拟在分析燃料效率,结合多尺度模型,以及设计SOFC组件及新结构方面的研究进展。对应用宏观数值仿真方法研究SOFC进行总结和展望,认为目前需要统一SOFC结构设计的评价标准,以便量化对比。
中图分类号:
栾凯夫, 蔡长焜, 谢满意, 张纯, 郑坤灿, 安胜利. 固体氧化物燃料电池气流和热场的宏观尺度数值模拟研究进展[J]. 储能科学与技术, 2023, 12(9): 2985-3002.
Kaifu LUAN, Changkun CAI, Manyi XIE, Chun ZHANG, Kuncan ZHENG, Shengli AN. Research progress of macroscale numerical simulation of fluid and thermal fields of solid oxide fuel cells[J]. Energy Storage Science and Technology, 2023, 12(9): 2985-3002.
1 | NI D W, CHARLAS B, KWOK K, et al. Influence of temperature and atmosphere on the strength and elastic modulus of solid oxide fuel cell anode supports[J]. Journal of Power Sources, 2016, 311: 1-12. |
2 | WU Y H, LIU H K, WANG Y F, et al. Spatially resolved electrochemical performance and temperature distribution of a segmented solid oxide fuel cell under various hydrogen dilution ratios and electrical loadings[J]. Journal of Power Sources, 2022, 536: 231477. |
3 | KHALEEL M A, LIN Z, SINGH P, et al. A finite element analysis modeling tool for solid oxide fuel cell development: Coupled electrochemistry, thermal and flow analysis in MARC®[J]. Journal of Power Sources, 2004, 130(1/2): 136-148. |
4 | PONGRATZ G, SUBOTIĆ V, HOCHENAUER C, et al. Solid oxide fuel cell operation with biomass gasification product gases: Performance-and carbon deposition risk evaluation via a CFD modelling approach[J]. Energy, 2022, 244: 123085. |
5 | SINGH M, ZAPPA D, COMINI E. Solid oxide fuel cell: Decade of progress, future perspectives and challenges[J]. International Journal of Hydrogen Energy, 2021, 46(54): 27643-27674. |
6 | PETRUZZI L, COCCHI S, FINESCHI F. A global thermo-electrochemical model for SOFC systems design and engineering[J]. Journal of Power Sources, 2003, 118(1/2): 96-107. |
7 | KHAN M Z, ILTAF A, AHMAD ISHFAQ H, et al. Flat-tubular solid oxide fuel cells and stacks: A review[J]. Journal of Asian Ceramic Societies, 2021, 9(3): 745-770. |
8 | TIKIZ I, TAYMAZ I, PEHLIVAN H. CFD modelling and experimental validation of cell performance in a 3-D planar SOFC[J]. International Journal of Hydrogen Energy, 2019, 44(29): 15441-15455. |
9 | FANG X R, LIN Z J. Numerical study on the mechanical stress and mechanical failure of planar solid oxide fuel cell[J]. Applied Energy, 2018, 229: 63-68. |
10 | TAKINO K, TACHIKAWA Y, MORI K, et al. Simulation of SOFC performance using a modified exchange current density for pre-reformed methane-based fuels[J]. International Journal of Hydrogen Energy, 2020, 45(11): 6912-6925. |
11 | ZENG H Y, WANG Y Q, SHI Y X, et al. Highly thermal integrated heat pipe-solid oxide fuel cell[J]. Applied Energy, 2018, 216: 613-619. |
12 | PIANKO-OPRYCH P, ZINKO T, JAWORSKI Z. Simulation of thermal stresses for new designs of microtubular solid oxide fuel cell stack[J]. International Journal of Hydrogen Energy, 2015, 40(42): 14584-14595. |
13 | YANG C, WANG J T, ZHAO J P, et al. CFD modeling and performance comparison of solid oxide fuel cell and electrolysis cell fueled with syngas[J]. International Journal of Energy Research, 2019, 43(7): 2656-2677. |
14 | XENOS D P, HOFMANN P, PANOPOULOS K D, et al. Detailed transient thermal simulation of a planar SOFC (solid oxide fuel cell) using gPROMS™[J]. Energy, 2015, 81: 84-102. |
15 | ILBAS M, ALEMU M A, CIMEN F M. Comparative performance analysis of a direct ammonia-fuelled anode supported flat tubular solid oxide fuel cell: A 3D numerical study[J]. International Journal of Hydrogen Energy, 2022, 47(5): 3416-3428. |
16 | ANDERSSON M, YUAN J L, SUNDÉN B. Review on modeling development for multiscale chemical reactions coupled transport phenomena in solid oxide fuel cells[J]. Applied Energy, 2010, 87(5): 1461-1476. |
17 | CELIK S, IBRAHIMOGLU B, MAT M D, et al. Micro level two dimensional stress and thermal analysis anode/electrolyte interface of a solid oxide fuel cell[J]. International Journal of Hydrogen Energy, 2015, 40(24): 7895-7902. |
18 | LU X K, BERTEI A, HEENAN T M M, et al. Multi-length scale microstructural design of micro-tubular solid oxide fuel cells for optimised power density and mechanical robustness[J]. Journal of Power Sources, 2019, 434: 226744. |
19 | PEKSEN M. A coupled 3D thermofluid-thermomechanical analysis of a planar type production scale SOFC stack[J]. International Journal of Hydrogen Energy, 2011, 36(18): 11914-11928. |
20 | CHIANG L K, LIU H C, SHIU Y H, et al. Thermo-electrochemical and thermal stress analysis for an anode-supported SOFC cell[J]. Renewable Energy, 2008, 33(12): 2580-2588. |
21 | MORTADA M, RAMADAN H S, FARAJ J, et al. Impacts of reactant flow nonuniformity on fuel cell performance and scaling-up: Comprehensive review, critical analysis and potential recommendations[J]. International Journal of Hydrogen Energy, 2021, 46(63): 32161-32191. |
22 | AMIRI A, VIJAY P, TADÉ M O, et al. Planar SOFC system modelling and simulation including a 3D stack module[J]. International Journal of Hydrogen Energy, 2016, 41(4): 2919-2930. |
23 | HE Z J, LI H, BIRGERSSON E. Correlating variability of modeling parameters with non-isothermal stack performance: Monte Carlo simulation of a portable 3D planar solid oxide fuel cell stack[J]. Applied Energy, 2014, 136: 560-575. |
24 | HE Z J, LI H, BIRGERSSON E. Reduced model for the planar solid oxide fuel cell[J]. Computers & Chemical Engineering, 2013, 52: 155-167. |
25 | CHOROOMZADEH M, KHAZAEE I. Significance of aspect ratio parameter on a solid oxide fuel cell with rectangular, trapezoidal, and triangular obstacles in the flow channel[J]. Arabian Journal for Science and Engineering, 2023, 48(7): 8595-8611. |
26 | MA R, GAO F, BREAZ E, et al. Multidimensional reversible solid oxide fuel cell modeling for embedded applications[J]. IEEE Transactions on Energy Conversion, 2018, 33(2): 692-701. |
27 | TSERONIS K, BONIS I, KOOKOS I K, et al. Parametric and transient analysis of non-isothermal, planar solid oxide fuel cells[J]. International Journal of Hydrogen Energy, 2012, 37(1): 530-547. |
28 | HE Z J, BIRGERSSON E, LI H. Reduced non-isothermal model for the planar solid oxide fuel cell and stack[J]. Energy, 2014, 70: 478-492. |
29 | CHEN B, XU H R, TAN P, et al. Thermal modelling of ethanol-fuelled solid oxide fuel cells[J]. Applied Energy, 2019, 237: 476-486. |
30 | HAO C K, ZENG Z Z, ZHAO B G, et al. Local heat generation management for temperature gradient reduction in tubular solid oxide fuel cells[J]. Applied Thermal Engineering, 2022, 211: 118453. |
31 | LEE S, PARK M, KIM H, et al. Thermal conditions and heat transfer characteristics of high-temperature solid oxide fuel cells investigated by three-dimensional numerical simulations[J]. Energy, 2017, 120: 293-305. |
32 | GARI A A, AHMED K I, AHMED M H. Performance and thermal stress of tubular functionally graded solid oxide fuel cells[J]. Energy Reports, 2021, 7: 6413-6421. |
33 | GUO M T, LIN Z J. Long-term evolution of mechanical performance of solid oxide fuel cell stack and the underlying mechanism[J]. International Journal of Hydrogen Energy, 2021, 46(47): 24293-24304. |
34 | JIANG C Y, GU Y C, GUAN W B, et al. 3D thermo-electro-chemo-mechanical coupled modeling of solid oxide fuel cell with double-sided cathodes[J]. International Journal of Hydrogen Energy, 2020, 45(1): 904-915. |
35 | CHEN D F, DING K, CHEN Z Y, et al. Physics field distributions within fuel cell stacks with manifolds penetrating through the plane zone and open outlet features[J]. Energy Conversion and Management, 2018, 178: 190-199. |
36 | CHEN D F, XU Y, HU B, et al. Investigation of proper external air flow path for tubular fuel cell stacks with an anode support feature[J]. Energy Conversion and Management, 2018, 171: 807-814. |
37 | CHEN D F, ZENG Q C, SU S C, et al. Geometric optimization of a 10-cell modular planar solid oxide fuel cell stack manifold[J]. Applied Energy, 2013, 112: 1100-1107. |
38 | KHODABANDEH E, ALI AKBARI O, AKBARI S, et al. The effects of oil/MWCNT nanofluids and geometries on the solid oxide fuel cell cooling systems: A CFD study[J]. Journal of Thermal Analysis and Calorimetry, 2021, 144(1): 245-256. |
39 | CHELMEHSARA M E, MAHMOUDIMEHR J. Techno-economic comparison of anode-supported, cathode-supported, and electrolyte-supported SOFCs[J]. International Journal of Hydrogen Energy, 2018, 43(32): 15521-15530. |
40 | CHEN Q Y, WANG Q W, ZHANG J, et al. Effect of bi-layer interconnector design on mass transfer performance in porous anode of solid oxide fuel cells[J]. International Journal of Heat and Mass Transfer, 2011, 54(9/10): 1994-2003. |
41 | FAN S L, ZHU P L, LIU Y, et al. Three-dimensional structure research of anode-supported planar solid oxide fuel cells[J]. Journal of Energy Engineering, 2022, 148(3): 4022010.1-12. |
42 | SU S C, ZHANG Q, GAO X, et al. Effects of changes in solid oxide fuel cell electrode thickness on ohmic and concentration polarizations[J]. International Journal of Hydrogen Energy, 2016, 41(36): 16181-16190. |
43 | HESAMI H, BORJI M, REZAPOUR J. Three-dimensional numerical investigation on the effect of interconnect design on the performance of internal reforming planar solid oxide fuel cell[J]. Korean Journal of Chemical Engineering, 2021, 38(12): 2423-2435. |
44 | ZHANG Z G, YUE D T, YANG G G, et al. Three-dimensional CFD modeling of transport phenomena in multi-channel anode-supported planar SOFCs[J]. International Journal of Heat and Mass Transfer, 2015, 84: 942-954. |
45 | LIN B, SHI Y X, NI M, et al. Numerical investigation on impacts on fuel velocity distribution nonuniformity among solid oxide fuel cell unit channels[J]. International Journal of Hydrogen Energy, 2015, 40(7): 3035-3047. |
46 | DUHN J D, JENSEN A D, WEDEL S, et al. Optimization of a new flow design for solid oxide cells using computational fluid dynamics modelling[J]. Journal of Power Sources, 2016, 336: 261-271. |
47 | ZOU Y T, LI J, ZHANG J Q, et al. Simulation of two types fuel cell stack models to investigate the relationship between air flow distribution and structure[J]. Ionics, 2019, 25(10): 4851-4859. |
48 | SU S C, HE H H, CHEN D F, et al. Flow distribution analyzing for the solid oxide fuel cell short stacks with rectangular and discrete cylindrical rib configurations[J]. International Journal of Hydrogen Energy, 2015, 40(1): 577-592. |
49 | RASHID K, DONG S K, ALI KHAN R, et al. Optimization of manifold design for 1 kW-class flat-tubular solid oxide fuel cell stack operating on reformed natural gas[J]. Journal of Power Sources, 2016, 327: 638-652. |
50 | ZHAO C, YANG J J, ZHANG T, et al. Numerical simulation of flow distribution for external manifold design in solid oxide fuel cell stack[J]. International Journal of Hydrogen Energy, 2017, 42(10): 7003-7013. |
51 | DONG J, XU X H, XU B. CFD analysis of a novel modular manifold with multi-stage channels for uniform air distribution in a fuel cell stack[J]. Applied Thermal Engineering, 2017, 124: 286-293. |
52 | APFEL H, RZEPKA M, TU H, et al. Thermal start-up behaviour and thermal management of SOFC's[J]. Journal of Power Sources, 2006, 154(2): 370-378. |
53 | KONG W, ZHANG W X, ZHANG S D, et al. Residual stress analysis of a micro-tubular solid oxide fuel cell[J]. International Journal of Hydrogen Energy, 2016, 41(36): 16173-16180. |
54 | BAEK S M, JEONG A, NAM J H, et al. Three-dimensional micro/macroscale simulation of planar, anode-supported, intermediate-temperature solid oxide fuel cells: I. Model development for hydrogen fueled operation[J]. International Journal of Hydrogen Energy, 2019, 44(29): 15456-15481. |
55 | LEE S, BAE Y, YOON K J, et al. Key characteristics of a hydrocarbon-fueled solid oxide fuel cell examined by local thermodynamic states[J]. Energy Conversion and Management, 2018, 174: 565-578. |
56 | ZENG M, YUAN J L, ZHANG J, et al. Investigation of thermal radiation effects on solid oxide fuel cell performance by a comprehensive model[J]. Journal of Power Sources, 2012, 206: 185-196. |
57 | LIN B, SHI Y X, CAI N S. Numerical simulation of cell-to-cell performance variation within a syngas-fuelled planar solid oxide fuel cell stack[J]. Applied Thermal Engineering, 2017, 114: 653-662. |
58 | KIM D H, BAE Y, LEE S, et al. Thermal analysis of a 1-kW hydrogen-fueled solid oxide fuel cell stack by three-dimensional numerical simulation[J]. Energy Conversion and Management, 2020, doi: 10.1016/j.enconman.2020.113213. |
59 | ZHENG K Q, KUANG Y, RAO Z H, et al. Numerical study on the effect of bi-polar plate geometry in the SOFC heating-up process[J]. Journal of Renewable and Sustainable Energy, 2019, 11(1): 014301. |
60 | AL-MASRI A, PEKSEN M, BLUM L, et al. A 3D CFD model for predicting the temperature distribution in a full scale APU SOFC short stack under transient operating conditions[J]. Applied Energy, 2014, 135: 539-547. |
61 | XU M, LI T S, YANG M, et al. Modeling of an anode supported solid oxide fuel cell focusing on thermal stresses[J]. International Journal of Hydrogen Energy, 2016, 41(33): 14927-14940. |
62 | PIANKO-OPRYCH P, ZINKO T, JAWORSKI Z. Modeling of thermal stresses in a microtubular solid oxide fuel cell stack[J]. Journal of Power Sources, 2015, 300: 10-23. |
63 | PROMSEN M, KOMATSU Y, SCIAZKO A, et al. Feasibility study on saturated water cooled solid oxide fuel cell stack[J]. Applied Energy, 2020, 279: 115803. |
64 | SUGIHARA S, IWAI H. Experimental investigation of temperature distribution of planar solid oxide fuel cell: Effects of gas flow, power generation, and direct internal reforming[J]. International Journal of Hydrogen Energy, 2020, 45(46): 25227-25239. |
65 | SERINCAN M F, PASAOGULLARI U, SINGH P. Controlling reformation rate for a more uniform temperature distribution in an internal methane steam reforming solid oxide fuel cell[J]. Journal of Power Sources, 2020, 468: 228310. |
66 | WANG Y Q, BANERJEE A, WEHRLE L, et al. Performance analysis of a reversible solid oxide cell system based on multi-scale hierarchical solid oxide cell modelling[J]. Energy Conversion and Management, 2019, 196: 484-496. |
67 | BABAIE RIZVANDI O, MIAO X Y, FRANDSEN H L. Multiscale modeling of degradation of full solid oxide fuel cell stacks[J]. International Journal of Hydrogen Energy, 2021, 46(54): 27709-27730. |
68 | LI J Y, LIN Z J. Effects of electrode composition on the electrochemical performance and mechanical property of micro-tubular solid oxide fuel cell[J]. International Journal of Hydrogen Energy, 2012, 37(17): 12925-12940. |
69 | KASHMIRI S A, TAHIR M W, AFZAL U. Combustion modeling and simulation of recycled anode-off-gas from solid oxide fuel cell[J]. Energies, 2020, 13(19): 5186. |
70 | SCHLUCKNER C, SUBOTIĆ V, PREIßL S, et al. Numerical analysis of flow configurations and electrical contact positions in SOFC single cells and their impact on local effects[J]. International Journal of Hydrogen Energy, 2019, 44(3): 1877-1895. |
[1] | 孛衍君, 薛新杰, 王化宁, 赵长颖. 基于相变堆积床的卡诺电池系统设计与实验研究[J]. 储能科学与技术, 2023, 12(9): 2823-2832. |
[2] | 陈满, 程志翔, 赵春朋, 彭鹏, 雷旗开, 金凯强, 王青松. 锂离子电池储能集装箱爆炸危害数值模拟[J]. 储能科学与技术, 2023, 12(8): 2594-2605. |
[3] | 严景好, 李杰, 李一鸣, 孙小琴, 席丽娜, 姜昌伟. 基于梯度孔隙率金属泡沫的复合相变单元储热性能数值模拟[J]. 储能科学与技术, 2023, 12(8): 2424-2434. |
[4] | 陈育新, 杨家沐, 练成, 刘洪来. 基于相场模型的锂电池电极浆料稳定涂布窗口分析[J]. 储能科学与技术, 2023, 12(7): 2185-2193. |
[5] | 彭子安, 段文超, 李杰, 孙小琴, 宋孟杰. 数据中心用壳管式相变储能换热器的储能特性[J]. 储能科学与技术, 2023, 12(6): 1765-1773. |
[6] | 禹永帅, 刘永峰, 裴普成, 张璐, 姚圣卓. 阴极相对湿度对PEMFC电解质水含量及性能的影响[J]. 储能科学与技术, 2023, 12(6): 1755-1764. |
[7] | 陈育新, 杨家沐, 李东博, 练成, 刘洪来. 圆柱形锂离子电池真空干燥过程的数值模拟[J]. 储能科学与技术, 2023, 12(6): 1957-1967. |
[8] | 胡自锋, 徐耀祖, 段振云, 商向东, 徐景久. 新型蓄热体结构蓄热过程分析[J]. 储能科学与技术, 2023, 12(1): 165-171. |
[9] | 葛苏槿, 张龙, 杨晓华, 单文豪, 徐广强. 冷风送风方式对储能电池簇降温效果影响的模拟[J]. 储能科学与技术, 2023, 12(1): 150-154. |
[10] | 董乐贤, 郑群, 黄悦, 田志鹏, 刘建平, 王超, 梁波, 雷励斌. 管状固体氧化物燃料电池前沿技术研究进展[J]. 储能科学与技术, 2023, 12(1): 131-138. |
[11] | 唐奡, 严川伟. 液流电池模拟仿真研究现状与展望[J]. 储能科学与技术, 2022, 11(9): 2866-2878. |
[12] | 刘长洋, 卞刘振, 郜建全, 彭继华, 彭军, 安胜利. 固体氧化物燃料电池La0.7Sr0.3Fe0.9Ni0.1O3-δ 对称电极的电化学性能[J]. 储能科学与技术, 2022, 11(7): 2059-2065. |
[13] | 冯国会, 王天雨, 王刚. 封装方式对相变水箱蓄放热性能影响模拟分析[J]. 储能科学与技术, 2022, 11(7): 2161-2176. |
[14] | 叶文兰, 赵明, 胡明禹, 田扬. 管束式相变蓄热器的蓄放热性能分析[J]. 储能科学与技术, 2022, 11(7): 2151-2160. |
[15] | 李仲博, 汉京晓, 王成成, 杨慧, 杨娜, 尹少武, 王立, 童莉葛, 唐志伟, 丁玉龙. 热化学反应器放热过程模拟及参数影响规律[J]. 储能科学与技术, 2022, 11(7): 2133-2140. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||