储能科学与技术 ›› 2021, Vol. 10 ›› Issue (3): 1080-1087.doi: 10.19799/j.cnki.2095-4239.2020.0420

• 储能系统与工程 • 上一篇    下一篇

两种变厚度空心储能飞轮的应力特性

兰晨(), 李文艳()   

  1. 华北电力大学能源动力与机械工程学院,北京 102206
  • 收稿日期:2020-12-29 修回日期:2021-02-07 出版日期:2021-05-05 发布日期:2021-04-30
  • 通讯作者: 李文艳 E-mail:799987660@qq.com;liweny@126.com
  • 作者简介:兰晨(1997—),男,硕士研究生,主要从事储能飞轮结构设计与优化,E-mail:799987660@qq.com

Stress characteristics of two kinds of variable thickness hollow energy storage flywheels

Chen LAN(), Wenyan LI()   

  1. School of Energy Power and Mechanical Engineering of North China Electric Power University, Beijing 102206, China
  • Received:2020-12-29 Revised:2021-02-07 Online:2021-05-05 Published:2021-04-30
  • Contact: Wenyan LI E-mail:799987660@qq.com;liweny@126.com

摘要:

为了分析变厚度空心储能飞轮的应力特性,建立两种变厚度空心飞轮模型,利用Ansys Workbench有限元软件分析两种飞轮模型的应力特性,通过增加两个转子模型的轮缘高度研究飞轮应力与飞轮变形量的变化规律。结果显示,两个飞轮模型的最大径向应力、最大环向应力和最大轴向应力都分别在轮缘高度为60、60、80 mm时达到稳定值,且在具有相同转动惯量的情况下模型一比模型二的各项最大应力值分别大65%、13.3%、430%,变形量小43.89%;模型一沿路径的各项应力稳定值比模型二对应应力稳定值分别大54.3%、44.4%、1420%。相同条件下,采用飞轮模型一能更好地减轻飞轮变形;采用飞轮模型二能更好地减小飞轮应力。研究结论可为采用长圆筒结构的储能飞轮设计提供参考。

关键词: 飞轮储能, Ansys Workbench, 变厚度飞轮, 应力分析

Abstract:

Two models of hollow flywheel with variable thickness are established to analyze their stress characteristics. The stress characteristics of the two models are analyzed using ANSYS Workbench. By increasing the flange height of the two rotor models, the variation law of flywheel stress and flywheel deformation is studied. Seven suitable flange heights are selected to analyze the change trend of stress in the direction of flywheel radius under the selected flange height, and the maximum stress and maximum deformation of the two flywheel models are compared. The results showed that the maximum radial stress, maximum circumferential stress, and maximum axial stress of the two flywheel models reach stable values at the flange height of 60 mm, 60 mm, and 80 mm, respectively. The maximum stresses of Model 1 are 65%, 13.3%, and 430% higher than those of Model 2, and the deformation is 43.89% lower than that of Model 2. Under the same moment of inertia, the stress stable values of Model 1 are 54.3%, 44.4%, and 1420% higher than those of Model 2. During the same conditions, using flywheel Model 1 can better reduce the deformation of flywheel; using flywheel Model 2 can better reduce the stress of flywheel. The research results can provide a reference for the design of energy storage flywheels with long cylinder structures.

Key words: flywheel energy storage, Ansys Workbench, variable thickness flywheel, stress analysis

中图分类号: