储能科学与技术 ›› 2021, Vol. 10 ›› Issue (6): 2127-2143.doi: 10.19799/j.cnki.2095-4239.2021.0137

• 新储能体系 • 上一篇    下一篇

钛铌氧化物用于锂离子电池负极的研究进展

孙德旺(), 蒋必志, 袁涛(), 郑时有   

  1. 上海理工大学材料科学与工程学院,上海 200093
  • 收稿日期:2021-04-01 修回日期:2021-06-07 出版日期:2021-11-05 发布日期:2021-11-03
  • 作者简介:孙德旺(1995—),男,硕士研究生,研究方向为钛铌氧化物负极材料的制备、改性及应用,E-mail:710763780@qq.com|袁涛,副教授,研究方向为电化学储能器件关键材料技术,E-mail:yuantao@usst.edu.cn
  • 基金资助:
    国家自然科学基金(51971146);上海市教委创新工程(2019-01-07-00-07-E00015);上海市浦江人才(21PJ1411100)

Research progress of titanium niobium oxide used as anode of lithium-ion batteries

Dewang SUN(), Bizhi JIANG, Tao YUAN(), Shiyou ZHENG   

  1. School of Materials Science & Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
  • Received:2021-04-01 Revised:2021-06-07 Online:2021-11-05 Published:2021-11-03

摘要:

钛铌氧化物(TNO)负极材料因其具有较高的比容量、安全的嵌锂电位、快速嵌锂通道和稳定的嵌锂结构已成为当前高功率、长寿命锂离子动力电池负极首选材料之一。然而,其较低的电子电导率限制了TNO负极材料高倍率性能的发挥。本文通过对近期相关研究的探讨,综述了TNO的结构特点、制备方法及改性策略,着重讨论了几种不同Ti/Nb比例材料的晶体结构及其氧化还原与插层赝电容的协同嵌锂机制,阐明其快速导锂机理;同时介绍了固相反应法、溶胶凝胶法、静电纺丝法、模板法和溶剂热法等几种TNO材料先进制备工艺及各自优势;重点分析了元素掺杂、缺陷设计以及与导电材料复合等改性方案对TNO电子传导特性的影响和对电化学性能的改善效果。最后,本文还对TNO作为负极材料在锂离子全电池和混合锂离子电容器两种储能体系中的研究现状、存在问题及应用前景进行了分析和阐述。综合分析表明,在TNO的改性方案中,元素掺杂和缺陷设计可以改变TNO的电子结构,导电材料复合结构设计可为其构建多维电子通路,而多种改性方案的迭代可明显提高TNO材料的倍率性能和循环稳定性,有望使其在高功率储能器件中获得良好应用。

关键词: 锂离子电池, 负极材料, 钛铌氧化物, 嵌锂机制, 改性策略

Abstract:

Titanium niobium oxide (TNO) has become one of the preferred anode materials for high-power and long-life lithium-ion power batteries due to its high specific capacity, safe Li+-intercalation potential, fast Li+-intercalation path, and stable Li+-intercalation structure. The relatively low electronic conductivity of TNO anode materials, on the other hand, limits their high rate of performance. TNO's structural characteristics, preparation methods, and modification strategies are discussed in this paper. The crystal structures of several TNO materials with different Ti/Nb ratios are discussed, as well as the synergistic mechanism of both redox and intercalation pseudocapacitance, and the mechanism of rapid lithium conduction is elucidated. Furthermore, several methods and their advantages for TNO preparation are introduced, including solid-state reaction, sol-gel method, electrospinning method, template method, and solvothermal method. In addition, the effects of doping, defect, and composite on electron and charge conductivities, as well as the electrochemical performance of TNO, are emphatically analyzed. Finally, the research status, existing issues, and applications of TNO as anode material in two different energy storage systems of lithium-ion battery and hybrid lithium-ion capacitor are also discussed. Comprehensive analysis reveals that element doping and defect design can change the electronic structure of TNO, and conductive material composite can be used to construct a multi-dimensional electronic path. The combination of various modifications, in particular, can significantly improve the rate performance and cycle stability of TNO materials, which is expected to make it a good application in high-power energy storage devices.

Key words: lithium-ion battery, anode materials, titanium niobium oxide, lithium intercalation mechanism, modification strategies

中图分类号: