储能科学与技术 ›› 2021, Vol. 10 ›› Issue (6): 2127-2143.doi: 10.19799/j.cnki.2095-4239.2021.0137
收稿日期:
2021-04-01
修回日期:
2021-06-07
出版日期:
2021-11-05
发布日期:
2021-11-03
作者简介:
孙德旺(1995—),男,硕士研究生,研究方向为钛铌氧化物负极材料的制备、改性及应用,E-mail:基金资助:
Dewang SUN(), Bizhi JIANG, Tao YUAN(), Shiyou ZHENG
Received:
2021-04-01
Revised:
2021-06-07
Online:
2021-11-05
Published:
2021-11-03
摘要:
钛铌氧化物(TNO)负极材料因其具有较高的比容量、安全的嵌锂电位、快速嵌锂通道和稳定的嵌锂结构已成为当前高功率、长寿命锂离子动力电池负极首选材料之一。然而,其较低的电子电导率限制了TNO负极材料高倍率性能的发挥。本文通过对近期相关研究的探讨,综述了TNO的结构特点、制备方法及改性策略,着重讨论了几种不同Ti/Nb比例材料的晶体结构及其氧化还原与插层赝电容的协同嵌锂机制,阐明其快速导锂机理;同时介绍了固相反应法、溶胶凝胶法、静电纺丝法、模板法和溶剂热法等几种TNO材料先进制备工艺及各自优势;重点分析了元素掺杂、缺陷设计以及与导电材料复合等改性方案对TNO电子传导特性的影响和对电化学性能的改善效果。最后,本文还对TNO作为负极材料在锂离子全电池和混合锂离子电容器两种储能体系中的研究现状、存在问题及应用前景进行了分析和阐述。综合分析表明,在TNO的改性方案中,元素掺杂和缺陷设计可以改变TNO的电子结构,导电材料复合结构设计可为其构建多维电子通路,而多种改性方案的迭代可明显提高TNO材料的倍率性能和循环稳定性,有望使其在高功率储能器件中获得良好应用。
中图分类号:
孙德旺, 蒋必志, 袁涛, 郑时有. 钛铌氧化物用于锂离子电池负极的研究进展[J]. 储能科学与技术, 2021, 10(6): 2127-2143.
Dewang SUN, Bizhi JIANG, Tao YUAN, Shiyou ZHENG. Research progress of titanium niobium oxide used as anode of lithium-ion batteries[J]. Energy Storage Science and Technology, 2021, 10(6): 2127-2143.
1 | ZHANG P C, YUAN T, PANG Y P, et al. Influence of current density on graphite anode failure in lithium-ion batteries[J]. Journal of the Electrochemical Society, 2019, 166(3): A5489-A5495. |
2 | WANG B, LUO B, LI X L, et al. The dimensionality of Sn anodes in Li-ion batteries[J]. Materials Today, 2012, 15(12): 544-552. |
3 | ROY K, WAHID M, PUTHUSSERI D, et al. High capacity, power density and cycling stability of silicon Li-ion battery anodes with a few layer black phosphorus additive[J]. Sustainable Energy & Fuels, 2019, 3(1): 245-250. |
4 | 乔荣涵, 岑官骏, 申晓宇, 等. 锂电池百篇论文点评(2020.12.1—2021.1.31)[J]. 储能科学与技术,2021, 10(2): 393-407. |
QIAO Ronghan, CEN Guanjun, SHEN Xiaoyu, et al. Reviews of selected 100 recent papers for lithium batteries(Dec 1, 2020 to Jan 31, 2021)[J]. Energy Storage Science and Technology, 2021, 10(2): 393-407. | |
5 | VIROLAINEN S, FALLAH F M, LAITINEN A, et al. Solvent extraction fractionation of Li-ion battery leachate containing Li, Ni, and Co[J]. Separation and Purification Technology, 2017, 179: 274-282. |
6 | ZHANG Y, HU M Z, YUAN M W, et al. Ordered two-dimensional porous Co3O4 nanosheets as electrocatalysts for rechargeable Li-O2 batteries[J]. Nano Research, 2019, 12(2): 299-302. |
7 | PANG Y P, WANG J, ZHOU Z G, et al. Core-shell Fe3O4@Fe ultrafine nanoparticles as advanced anodes for Li-ion batteries[J]. Journal of Alloys and Compounds, 2018, 735: 833-839. |
8 | 尹坚, 董季玲, 丁皓, 等. 锂离子电池过渡金属氧化物负极材料研究进展[J]. 储能科学与技术, 2021, 10(3): 995-1001. |
YIN Jian, DONG Jiling, DING Hao, et al. Research progress of transition metal oxide anode materials for lithium ion batteries[J]. Energy Storage Science and Technology, 2021, 10(3): 995-1001. | |
9 | YUAN T, TAN Z P, MA C R, et al. Challenges of spinel Li4Ti5O12 for lithium-ion battery industrial applications[J]. Advanced Energy Materials, 2017, 7(12): 1601625. |
10 | SALMAN M S, PARK A R, CHA M J, et al. Lysozyme-templated meso-macroporous hollow TiO2 for lithium ion battery anode[J]. ACS Applied Nano Materials, 2018, 1(2): 698-710. |
11 | HOU J, ZHANG H M, LIN J J, et al. Hollow TiO2 submicrospheres assembled by tiny nanocrystals as superior anode for lithium ion battery[J]. Journal of Materials Chemistry A, 2019, 7(41): 23733-23738. |
12 | SOTOMAYOR M E, DE LA TORRE-GAMARRA C, BUCHELI W, et al. Additive-free Li4Ti5O12 thick electrodes for Li-ion batteries with high electrochemical performance[J]. Journal of Materials Chemistry A, 2018, 6(14): 5952-5961. |
13 | AURBACH D, ZINIGRAD E, COHEN Y, et al. A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions[J]. Solid State Ionics, 2002, 148: 405-416. |
14 | ZHENG Y X, XIA S X, DONG F, et al. High performance Li metal anode enabled by robust covalent triazine framework-based protective layer[J]. Advanced Functional Materials, 2020, 31(6): 2006159. |
15 | HAN J, HUANG Y H, GOODENOUGH J B. New anode framework for rechargeable lithium batteries[J]. Chemistry of Materials, 2011, 23(8): 2027-2029. |
16 | CAVA R J, MURPHY D W, ZAHURAK S M. Lithium insertion in Wadsley-Roth phases based on niobium oxide[J]. Journal of the electrochemical society, 1983, 130(12): 2345-2351. |
17 | LIN C F, YU S, WU S Q, et al. Ru0.01Ti0.99Nb2O7 as an intercalation-type anode material with a large capacity and high rate performance for lithium-ion batteries[J]. Journal of Materials Chemistry A, 2015, 3(16): 8627-8635. |
18 | WADSLEY A D. Mixed oxides of titanium and niobium. I[J]. Acta Crystallographica, 1961, 14(6): 660-664. |
19 | GRIFFITH K J, SEYMOUR I D, HOPE M A, et al. Ionic and Electronic conduction in TiNb2O7[J]. Journal of the American Chemical Society, 2019, 141(42): 16706-16725. |
20 | LIN C F, HU L, CHENG C B, et al. Nano-TiNb2O7/carbon nanotubes composite anode for enhanced lithium-ion storage[J]. Electrochimica Acta, 2018, 260: 65-72. |
21 | YANG C, DENG S J, LIN C F, et al. Porous TiNb24O62 microspheres as high-performance anode materials for lithium-ion batteries of electric vehicles[J]. Nanoscale, 2016, 8(44): 18792-18799. |
22 | GUO B K, YU X Q, SUN X G, et al. A long-life lithium-ion battery with a highly porous TiNb2O7 anode for large-scale electrical energy storage[J]. Energy & Environmental Science, 2014, 7(7): 2220-2226. |
23 | YU H X, LAN H, YAN L, et al. TiNb2O7 hollow nanofiber anode with superior electrochemical performance in rechargeable lithium ion batteries[J]. Nano Energy, 2017, 38: 109-117. |
24 | WU X Y, MIAO J, HAN W Z, et al. Investigation on Ti2Nb10O29 anode material for lithium-ion batteries[J]. Electrochemistry Communications, 2012, 25: 39-42. |
25 | HUANG H J, NIEDERBERGER M. Towards fast-charging technologies in Li+/Na+ storage: from the perspectives of pseudocapacitive materials and non-aqueous hybrid capacitors[J]. Nanoscale, 2019, 11(41): 19225-19240. |
26 | LOU S F, CHENG X Q, GAO J L, et al. Pseudocapacitive Li+ intercalation in porous Ti2Nb10O29 nanospheres enables ultra-fast lithium storage[J]. Energy Storage Materials, 2018, 11: 57-66. |
27 | AUGUSTYN V, COME J, LOWE M A, et al. High-rate electrochemical energy storage through Li+intercalation pseudocapacitance[J]. Nature Materials, 2013, 12(6): 518-522. |
28 | FU Q F, HOU J R, LU R H, et al. Electrospun Ti2Nb10O29 hollow nanofibers as high-performance anode materials for lithium-ion batteries[J]. Materials Letters, 2018, 214: 60-63. |
29 | LOU S F, MA Y L, CHENG X Q, et al. Facile synthesis of nanostructured TiNb2O7 anode materials with superior performance for high-rate lithium ion batteries[J]. Chemical Communications, 2015, 51(97): 17293-17296. |
30 | LI H S, SHEN L F, PANG G, et al. TiNb2O7 nanoparticles assembled into hierarchical microspheres as high-rate capability and long-cycle-life anode materials for lithium ion batteries[J]. Nanoscale, 2015, 7(2): 619-624. |
31 | LIU G Y, ZHAO L F, SUN R X, et al. Mesoporous TiNb2O7 microspheres as high performance anode materials for lithium-ion batteries with high-rate capability and long cycle-life[J]. Electrochimica Acta, 2018, 259: 20-27. |
32 | LOU S F, CHENG X Q, ZHAO Y, et al. Superior performance of ordered macroporous TiNb2O7 anodes for lithium ion batteries: understanding from the structural and pseudocapacitive insights on achieving high rate capability[J]. Nano Energy, 2017, 34: 15-25. |
33 | YANG C, YU S, MA Y, et al. Cr3+ and Nb5+ co-doped Ti2Nb10O29 materials for high-performance lithium-ion storage[J]. Journal of Power Sources, 2017, 360: 470-479. |
34 | CHENG Q S, LIANG J W, ZHU Y C, et al. Bulk Ti2Nb10O29 as long-life and high-power Li-ion battery anodes[J]. Journal of Materials Chemistry A, 2014, 2(41): 17258-17262. |
35 | LIU G Y, ZHAO Y Y, TANG Y F, et al. In situ Sol-gel synthesis of Ti2Nb10O29/C nanoparticles with enhanced pseudocapacitive contribution for a high-rate lithium-ion battery[J]. Rare Metals, 2020, 39(9): 1063-1071. |
36 | YU H X, CHENG X, ZHU H J, et al. Deep insights into kinetics and structural evolution of nitrogen-doped carbon coated TiNb24O62 nanowires as high-performance lithium container[J]. Nano Energy, 2018, 54: 227-237. |
37 | TANG K, MU X K, VAN AKEN P A, et al. "Nano-Pearl-String" TiNb2O7 as anodes for rechargeable lithium batteries[J]. Advanced Energy Materials, 2013, 3(1): 49-53. |
38 | FEI L, XU Y, WU X F, et al. SBA-15 confined synthesis of TiNb2O7 nanoparticles for lithium-ion batteries[J]. Nanoscale, 2013, 5(22): 11102-11107. |
39 | LI H S, SHEN L F, WANG J, et al. Three-dimensionally ordered porous TiNb2O7 nanotubes: a superior anode material for next generation hybrid supercapacitors[J]. Journal of Materials Chemistry A, 2015, 3(32): 16785-16790. |
40 | YAO Z J, XIA X H, ZHANG S Z, et al. Oxygen defect boosted N-doped Ti2Nb10O29 anchored on core-branch carbon skeleton for both high-rate liquid & solid-state lithium ion batteries[J]. Energy Storage Materials, 2020, 25: 555-562. |
41 | DENG S J, CHAO D L, ZHONG Y, et al. Vertical graphene/Ti2Nb10O29/hydrogen molybdenum bronze composite arrays for enhanced lithium ion storage[J]. Energy Storage Materials, 2018, 12: 137-144. |
42 | LIU G Y, JIN B, ZHANG R X, et al. Synthesis of Ti2Nb10O29/C composite as an anode material for lithium-ion batteries[J]. International Journal of Hydrogen Energy, 2016, 41(33): 14807-14812. |
43 | ZHU G Z, LI Q, ZHAO Y H, et al. Nanoporous TiNb2O7/C composite microspheres with three-dimensional conductive network for long-cycle-life and high-rate-capability anode materials for lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2017, 9(47): 41258-41264. |
44 | LI S, CAO X, SCHMIDT C N, et al. TiNb2O7/graphene composites as high-rate anode materials for lithium/sodium ion batteries[J]. Journal of Materials Chemistry A, 2016, 4(11): 4242-4251. |
45 | LIU X D, WANG H, ZHANG S Y, et al. Design of well-defined porous Ti2Nb10O29/C microspheres assembled from nanoparticles as anode materials for high-rate lithium ion batteries[J]. Electrochimica Acta, 2018, 292: 759-768. |
46 | MAO W T, LIU K C, GUO G, et al. Preparation and electrochemical performance of Ti2Nb10O29/Ag composite as anode materials for lithium ion batteries[J]. Electrochimica Acta, 2017, 253: 396-402. |
47 | LIU G Y, LIU X D, ZHAO Y Y, et al. Synthesis of Ag-coated TiNb2O7 composites with excellent electrochemical properties for lithium-ion battery[J]. Materials Letters, 2017, 197: 38-40. |
48 | SHI K Y, ZHITOMIRSKY I. Fabrication of polypyrrole-coated carbon nanotubes using oxidant-surfactant nanocrystals for supercapacitor electrodes with high mass loading and enhanced performance[J]. ACS Applied Materials & Interfaces, 2013, 5(24): 13161-13170. |
49 | KIM H, LEE Y, BYUN D, et al. TiNb2O7 microsphere anchored by polydopamine-modified graphene oxide as a superior anode material in lithium-ion batteries[J]. International Journal of Energy Research, 2020, 44(6): 4986-4996. |
50 | JO C, KIM Y, HWANG J, et al. Block copolymer directed ordered mesostructured TiNb2O7 multimetallic oxide constructed of nanocrystals as high power Li-ion battery anodes[J]. Chemistry of Materials, 2014, 26(11): 3508-3514. |
51 | SONG H, KIM Y T. A Mo-doped TiNb2O7 anode for lithium-ion batteries with high rate capability due to charge redistribution[J]. Chemical Communications 2015, 51(48): 9849-9852. |
52 | TAKASHIMA T, TOJO T, INADA R, et al. Characterization of mixed titanium-niobium oxide Ti2Nb10O29 annealed in vacuum as anode material for lithium-ion battery[J]. Journal of Power Sources, 2015, 276: 113-119. |
53 | LEE Y S, RYU K S. Study of the lithium diffusion properties and high rate performance of TiNb6O17 as an anode in lithium secondary battery[J]. Scientific Reports, 2017, 7(1): 16617. |
54 | YUAN Y, YU H X, CHENG X, et al. Preparation of TiNb6O17 nanospheres as high-performance anode candidates for lithium-ion storage[J]. Chemical Engineering Journal, 2019, 374: 937-946. |
55 | SUN R X, TAO Y, SUN H X, et al. Simple synthesis of TiNb6O17/C composite toward high-rate lithium storage[J]. Journal of Materials Science, 2019, 54(24): 14825-14833. |
56 | WANG W L, OH B Y, PARK J Y, et al. Solid-state synthesis of Ti2Nb10O29/reduced graphene oxide composites with enhanced lithium storage capability[J]. Journal of Power Sources, 2015, 300: 272-278. |
57 | YUAN T, LUO S N, SOULE L, et al. A hierarchical Ti2Nb10O29 composite electrode for highpower lithium-ion batteries and capacitors[J]. Materials Today, 2021, 45: 8-19. |
58 | YAO M, LIU A, XING C X, et al. Asymmetric supercapacitor comprising a core-shell TiNb2O7@MoS2/C anode and a high voltage ionogel electrolyte[J]. Chemical Engineering Journal, 2020, 394. |
59 | YAO Z J, XIA X H, ZHANG Y, et al. Superior high-rate lithium-ion storage on Ti2Nb10O29 arrays via synergistic TiC/C skeleton and N-doped carbon shell[J]. Nano Energy, 2018, 54: 304-312. |
60 | SHEN S H, GUO W H, XIE D, et al. A synergistic vertical graphene skeleton and S-C shell to construct high-performance TiNb2O7-based core/shell arrays[J]. Journal of Materials Chemistry A, 2018, 6(41): 20195-20204. |
61 | LIU M, DONG H C, ZHANG S, et al. Three-dimensional porous TiNb2O7/CNT-KB composite microspheres as lithium-ion battery anode material[J]. ChemElectroChem, 2019, 6(15): 3959-3965. |
62 | BUANNIC L, COLIN J F, CHAPUIS M, et al. Electrochemical performances and gassing behavior of high surface area titanium niobium oxides[J]. Journal of Materials Chemistry A, 2016, 4(29): 11531-11541. |
63 | HE Y B, LI B H, LIU M, et al. Gassing in Li4Ti5O12-based batteries and its remedy[J]. Scientific Reports, 2012, 2(1): 913. |
64 | JIAO X Y, HAO Q L, XIA X F, et al. Boosting long-cycle-life energy storage with holey graphene supported TiNb2O7 network nanostructure for lithium ion hybrid supercapacitors[J]. Journal of Power Sources, 2018, 403: 66-75. |
65 | WANG X F, SHEN G Z. Intercalation pseudo-capacitive TiNb2O7@carbon electrode for high-performance lithium ion hybrid electrochemical supercapacitors with ultrahigh energy density[J]. Nano Energy, 2015, 15: 104-115. |
[1] | 李海涛, 孔令丽, 张欣, 余传军, 王纪威, 徐琳. N/P设计对高镍NCM/Gr电芯性能的影响[J]. 储能科学与技术, 2022, 11(7): 2040-2045. |
[2] | 刘显茜, 孙安梁, 田川. 基于仿生翅脉流道冷板的锂离子电池组液冷散热[J]. 储能科学与技术, 2022, 11(7): 2266-2273. |
[3] | 陈龙, 夏权, 任羿, 曹高萍, 邱景义, 张浩. 多物理场耦合下锂离子电池组可靠性研究现状与展望[J]. 储能科学与技术, 2022, 11(7): 2316-2323. |
[4] | 易顺民, 谢林柏, 彭力. 基于VF-DW-DFN的锂离子电池剩余寿命预测[J]. 储能科学与技术, 2022, 11(7): 2305-2315. |
[5] | 祝庆伟, 俞小莉, 吴启超, 徐一丹, 陈芬放, 黄瑞. 高能量密度锂离子电池老化半经验模型[J]. 储能科学与技术, 2022, 11(7): 2324-2331. |
[6] | 王宇作, 王瑨, 卢颖莉, 阮殿波. 孔结构对软碳负极储锂性能的影响[J]. 储能科学与技术, 2022, 11(7): 2023-2029. |
[7] | 孔为, 金劲涛, 陆西坡, 孙洋. 对称蛇形流道锂离子电池冷却性能[J]. 储能科学与技术, 2022, 11(7): 2258-2265. |
[8] | 霍思达, 薛文东, 李新丽, 李勇. 基于CiteSpace知识图谱的锂电池复合电解质可视化分析[J]. 储能科学与技术, 2022, 11(7): 2103-2113. |
[9] | 邓健想, 赵金良, 黄成德. 高能量锂离子电池硅基负极黏结剂研究进展[J]. 储能科学与技术, 2022, 11(7): 2092-2102. |
[10] | 申晓宇, 岑官骏, 乔荣涵, 朱璟, 季洪祥, 田孟羽, 金周, 闫勇, 武怿达, 詹元杰, 俞海龙, 贲留斌, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2022.4.1—2022.5.31)[J]. 储能科学与技术, 2022, 11(7): 2007-2022. |
[11] | 欧宇, 侯文会, 刘凯. 锂离子电池中的智能安全电解液研究进展[J]. 储能科学与技术, 2022, 11(6): 1772-1787. |
[12] | 韩俊伟, 肖菁, 陶莹, 孔德斌, 吕伟, 杨全红. 致密储能:基于石墨烯的方法学和应用实例[J]. 储能科学与技术, 2022, 11(6): 1865-1873. |
[13] | 辛耀达, 李娜, 杨乐, 宋维力, 孙磊, 陈浩森, 方岱宁. 锂离子电池植入传感技术[J]. 储能科学与技术, 2022, 11(6): 1834-1846. |
[14] | 燕乔一, 吴锋, 陈人杰, 李丽. 锂离子电池负极石墨回收处理及资源循环[J]. 储能科学与技术, 2022, 11(6): 1760-1771. |
[15] | 沈秀, 曾月劲, 李睿洋, 李佳霖, 李伟, 张鹏, 赵金保. γ射线辐照交联原位固态化阻燃锂离子电池[J]. 储能科学与技术, 2022, 11(6): 1816-1821. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||