1 |
CHOMBO P V, LAOONUAL Y. A review of safety strategies of a Li-ion battery[J]. Journal of Power Sources, 2020, 478: doi: 10.1016/j.jpowsour.2020.228649.
|
2 |
AN Z, SHAH K, JIA L, et al. Modeling and analysis of thermal runaway in Li-ion cell[J]. Applied Thermal Engineering, 2019, 160: doi: 10.1016/j.applthermaleng.2019.113960.
|
3 |
HALLAJ S, MALEKI H, HONG J S, et al. Thermal modeling and design considerations of lithium-ion batteries[J]. Journal of Power Sources, 1999, 83(1/2): 1-8.
|
4 |
KWON K H, SHIN C B, KANG T H, et al. A two-dimensional modeling of a lithium-polymer battery[J]. Journal of Power Sources, 2006, 163(1): 151-157.
|
5 |
NEWMAN J S, TOBIAS C W. Theoretical analysis of current distribution in porous electrodes[J]. Journal of the Electrochemical Society, 1962, 109(12): doi: 10.1149/1.2425269.
|
6 |
李坤. 锂离子动力电池热—电化学耦合特性分析及有限元模拟[D]. 北京: 北京理工大学, 2016.
|
|
LI K. Study on electrochemical thermal analysis and finite element modelling for lithium ion power battery[D]. Beijing: Beijing Institute of Technology, 2016.
|
7 |
REN D S, FENG X N, LIU L S, et al. Investigating the relationship between internal short circuit and thermal runaway of lithium-ion batteries under thermal abuse condition[J]. Energy Storage Materials, 2021, 34: 563-573.
|
8 |
梅文昕, 段强领, 王青山, 等. 大型磷酸铁锂电池高温热失控模拟研究[J]. 储能科学与技术, 2021, 10(1): 202-209.
|
|
MEI W X, DUAN Q L, WANG Q S, et al. Thermal runaway simulation of large-scale lithium iron phosphate battery at elevated temperatures[J]. Energy Storage Science and Technology, 2021, 10(1): 202-209.
|
9 |
黄文才, 胡广地, 邓宇翔, 等. 锂离子电池的高温热失控模拟[J]. 电池, 2019, 49(3): 204-207.
|
|
HUANG W C, HU G D, DENG Y X, et al. Analysis on high temperature thermal runaway simulation of Li-ion battery[J]. Battery Bimonthly, 2019, 49(3): 204-207.
|
10 |
黄文才, 胡广地, 张琦, 等. 锂离子电池高温热模拟及热行为[J]. 电池, 2018, 48(6): 410-413.
|
|
HUANG W C, HU G D, ZHANG Q, et al. High temperature thermal simulation and thermal behavior of Li-ion battery[J]. Battery Bimonthly, 2018, 48(6): 410-413.
|
11 |
赵磊. 局部高温面热源接触下锂离子电池热失控特性研究[D]. 镇江: 江苏大学, 2019.
|
|
ZHAO L. Study on thermal runaway characteristics of lithium-ion battery under local high temperature surface heat source[D]. Zhenjiang: Jiangsu University, 2019.
|
12 |
宁凡雨, 王松蕊, 刘兴江. LiNixCoyMnzO2/C电池热稳定性模拟研究[J]. 电源技术, 2020, 44(7): 937-941.
|
|
NING F Y, WANG S R, LIU X J. Simulation study on thermal stability of LiNixCoyMnzO2/C cells[J]. Chinese Journal of Power Sources, 2020, 44(7): 937-941.
|
13 |
KRISTON A, PODIAS A, ADANOUJ I, et al. Analysis of the effect of thermal runaway initiation conditions on the severity of thermal runaway—Numerical simulation and machine learning study[J]. Journal of the Electrochemical Society, 2020, 167(9): doi: 10.1149/1945-7111/ab9b0b.
|
14 |
徐晓明, 袁秋奇, 张扬军, 等. 极耳侧加热条件下锂离子电池热失控的数值分析[J]. 汽车安全与节能学报, 2020, 11(3): 388-396.
|
|
XU X M, YUAN Q Q, ZHANG Y J, et al. Numerical analysis of thermal runaway of lithium-ion battery by heating form polar[J]. Journal of Automotive Safety and Energy, 2020, 11(3): 388-396.
|
15 |
SUN X D, XU X M, ZHAO L J, et al. Blocking analysis of thermal runaway of a lithium-ion battery under local high temperature based on the material stability and heat dissipation coefficient[J]. Ionics, 2021, 27(1): 107-122.
|
16 |
TANG W, XU X M, LI R Z, et al. Suppression of the lithium-ion battery thermal runaway during quantitative-qualitative change[J]. Ionics, 2020, 26(12): 6133-6143.
|
17 |
HU H, XU X M, SUN X D, et al. Numerical study on the inhibition control of lithium-ion battery thermal runaway[J]. ACS Omega, 2020, 5(29): 18254-18261.
|
18 |
CHEN Y Q, KANG Y Q, ZHAO Y, et al. A review of lithium-ion battery safety concerns: The issues, strategies, and testing standards[J]. Journal of Energy Chemistry, 2021, 59: 83-99.
|
19 |
WANG J G, MEI W X, CUI Z X, et al. Experimental and numerical study on penetration-induced internal short-circuit of lithium-ion cell[J]. Applied Thermal Engineering, 2020, 171: doi: 10.1016/j.applthermaleng.2020.115082.
|
20 |
崔志仙. 锂离子电池内短路诱发热失控机制研究[D]. 合肥: 中国科学技术大学, 2018.
|
|
CUI Z X. Study on thermal runaway mechanism of lithium ion battery induced by internal short circuit[D]. Hefei: University of Science and Technology of China, 2018.
|
21 |
LI Y D, WANG W W, LIN C, et al. Multi-physics safety model based on structure damage for lithium-ion battery under mechanical abuse[J]. Journal of Cleaner Production, 2020, 277: doi: 10.1016/j.jclepro.2020.124094.
|
22 |
LEE D C, KIM C W. Two-way nonlinear mechanical-electrochemical-thermal coupled analysis method to predict thermal runaway of lithium-ion battery cells caused by quasi-static indentation[J]. Journal of Power Sources, 2020, 475: doi: 10.1016/j.jpowsour. 2020.228678.
|
23 |
LI H G, LIU B H, ZHOU D, et al. Coupled mechanical-electrochemical-thermal study on the short-circuit mechanism of lithium-ion batteries under mechanical abuse[J]. Journal of the Electrochemical Society, 2020, 167(12): doi: 10.1149/1945-7111/aba96f.
|
24 |
XIA Y, WIERZBICKI T, SAHRAEI E, et al. Damage of cells and battery packs due to ground impact[J]. Journal of Power Sources, 2014, 267: 78-97.
|
25 |
齐创, 朱艳丽, 高飞, 等. 过充电条件下锂离子电池热失控数值模拟[J]. 北京理工大学学报, 2017, 37(10): 1048-1055.
|
|
QI C, ZHU Y L, GAO F, et al. Thermal runaway analysis of lithium-ion battery with overcharge[J]. Transactions of Beijing Institute of Technology, 2017, 37(10): 1048-1055.
|
26 |
HOSSEINZADEH E, ARIAS S, KRISHNA M, et al. Quantifying cell-to-cell variations of a parallel battery module for different pack configurations[J]. Applied Energy, 2021, 282: doi: 10.1016/j.apenergy.2020.115859.
|
27 |
崔志仙, 王青松, 孙金华. 锂枝晶导致的锂离子电池内短路模拟研究[J]. 火灾科学, 2019, 28(2): 101-112.
|
|
CUI Z X, WANG Q S, SUN J H. Numerical study on lithium dendrite-induced internal short circuit of lithium ion battery[J]. Fire Safety Science, 2019, 28(2): 101-112.
|
28 |
WANG J G, MEI W X, CUI Z X, et al. Investigation of the thermal performance in lithium-ion cells during polyformaldehyde nail penetration[J]. Journal of Thermal Analysis and Calorimetry, 2021, 145(6): 3255-3268.
|
29 |
邹时波, 李顶根, 李卫, 等. 相变材料热管理下电池热失控传播过程数值分析[J]. 工程热物理学报, 2019, 40(5): 1105-1111.
|
|
ZOU S B, LI D G, LI W, et al. Numerical study of battery thermal runaway propagation using PCM for thermal management[J]. Journal of Engineering Thermophysics, 2019, 40(5): 1105-1111.
|
30 |
王兵. 车用锂离子动力电池及模组热失控的实验与仿真研究[D]. 北京: 北京工业大学, 2018.
|
|
WANG B. Study on thermal runaway of lithium-ion power battery or module for electric vehicle through experiment and simulation[D]. Beijing: Beijing University of Technology, 2018.
|
31 |
齐创, 邝男男, 张亚军, 等. 高比能锂离子电池模组热扩散行为仿真研究[J/OL]. 高电压技术, 2021, https://doi.org/10.13336/j.1003-6520.hve.20201049.
|
|
QI C, KUANG N N,ZHANG Y J, et al. Study on the thermal propagation behavior of high energy density lithium-ion battery module with simulation[J/OL]. High Voltage Engineering, 2021, https://doi.org/10.13336/j.1003-6520.hve.20201049.
|
32 |
QIN J X, ZHAO S P, LIU X, et al. Simulation study on thermal runaway suppression of 18650 lithium battery[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2020: 1-13.
|
33 |
李顶根, 邹时波, 徐鹏, 等. 不同热管理方案下锂离子电池模组温度特性分析[J]. 汽车工程学报, 2020, 10(2): 98-106.
|
|
LI D G, ZOU S B, XU P, et al. Analysis of temperature characteristics of lithium ion battery modules under different thermal management schemes[J]. Chinese Journal of Automotive Engineering, 2020, 10(2): 98-106.
|
34 |
WANG G H, GAO Q, YAN Y Y, et al. Transient process optimization of battery cooling on heat transfer enhancement structure[J]. Applied Thermal Engineering, 2021, 182: doi: 10.1016/j.applthermaleng.2020.115897.
|
35 |
黄文才. 基于COMSOL的锂离子电池热失控模拟分析和研究[D]. 成都: 西南交通大学, 2019.
|
|
HUANG W C. Simulation and research on thermal runaway of lithium ion battery based on COMSOL[D]. Chengdu: Southwest Jiaotong University, 2019.
|
36 |
YE M Q, HU G D, GUO F, et al. A novel semi-analytical solution for calculating the temperature distribution of the lithium-ion batteries during nail penetration based on Green's function method[J]. Applied Thermal Engineering, 2020, 174: doi: 10.1016/j.applthermaleng.2020.115129.
|
37 |
张胜. 动力锂电池内部温度估计研究[D]. 合肥: 合肥工业大学, 2019.
|
|
ZHANG S. Research on internal temperature estimation of power lithium battery[D]. Hefei: Hefei University of Technology, 2019.
|
38 |
MEI W X, DUAN Q L, LU W, et al. An investigation on expansion behavior of lithium ion battery based on the thermal-mechanical coupling model[J]. Journal of Cleaner Production, 2020, 274: doi: 10.1016/j.jclepro.2020.122643.
|