1 |
孙欣, 方陈, 沈风, 等. 考虑风电出力不确定性的发用电机组组合方法[J]. 电工技术学报, 2017, 32(4): 204-211.
|
|
SUN X, FANG C, SHEN F, et al. An integrated generation-consumption unit commitment model considering the uncertainty of wind power[J]. Transactions of China Electrotechnical Society, 2017, 32(4): 204-211.
|
2 |
谢应昭, 卢继平. 含风储混合系统的多目标机组组合优化模型及求解[J]. 电力自动化设备, 2015, 35(3): 18-26.
|
|
XIE Y Z, LU J P. Multi-objective unit commitment optimization model including hybrid wind-storage system and its solution[J]. Electric Power Automation Equipment, 2015, 35(3): 18-26.
|
3 |
DING H J, HU Z C, SONG Y H. Stochastic optimization of the daily operation of wind farm and pumpedhydro-storage plant[J]. Renewable Energy, 2012, 48(6): 571-578.
|
4 |
熊猛, 高峰, 张海峰, 等. 基于混合储能系统的风电场调度策略[J]. 电网技术, 2014, 38(5): 1242-1249.
|
|
XIONG M, GAO F, ZHANG H F, et al. Hybrid energy storage based generation scheduling of wind farms[J]. Power System Technology, 2014, 38(5): 1242-1249.
|
5 |
DUKPA A, DUGGAL I, VENKATESH B, et al. Optimal participation and risk mitigation of wind generators in an electricity market[J]. IET Renewable Power Generation, 2010, 4(2): 165-175.
|
6 |
DICORATO M, FORTE G, PISANI M, et al. Planning and operating combined wind-storage system in electricity market[J]. IEEE Transactions on Sustainable Energy, 2012, 3(2): 209-217.
|
7 |
余涛, 周斌, 甄卫国. 强化学习理论在电力系统中的应用及展望[J]. 电力系统保护与控制, 2009, 37(14): 122-128.
|
|
YU T, ZHOU B, ZHEN W G. Application and development of reinforcement learning theory in power systems[J]. Power System Protection and Control, 2009, 37(14): 122-128.
|
8 |
杨挺, 赵黎媛, 刘亚闯, 等. 基于深度强化学习的综合能源系统动态经济调度[J]. 电力系统自动化, 2021, 45(5): 39-47.
|
|
YANG T, ZHAO L Y, LIU Y C, et al. Dynamic eco-nomic dispatch for integrated energy system based on deep rein-forcement learning[J]. Automation of Electric Power Systems, 2021, 45(5): 39-47.
|
9 |
于一潇, 杨佳峻, 杨明, 等. 基于深度强化学习的风电场储能系统预测决策一体化调度[J]. 电力系统自动化, 2021, 45(1): 132-140.
|
|
YU Y X, YANG J J, YANG M, et al. Prediction and decision integrated scheduling of energy storage system in wind farm based on deep reinforcement learning[J]. Automation of Electric Power Systems, 2021, 45(1): 132-140.
|
10 |
刘国静, 韩学山, 王尚, 等. 基于强化学习方法的风储合作决策[J]. 电网技术, 2016, 40(9): 2729-2736.
|
|
LIU G J, HAN X S, WANG S, et al. Optimal decision-making in the cooperation of wind power and energy storage based on reinforcement learning algorithm[J]. Power System Technology, 2016, 40(9): 2729-2736.
|
11 |
汤文亮, 张平, 汤树芳. 基于精英反向学习的萤火虫K-means改进算法[J]. 计算机工程与设计, 2019, 40(11): 3164-3169.
|
|
TANG W L, ZHANG P, TANG S F, et al. Improved firefly K-means algorithm based on elite opposition-based learning[J]. Computer Engineering and Design, 2019, 40(11): 3164-3169.
|
12 |
陈小雪, 尉永清, 任敏, 等. 基于萤火虫优化的加权K-means算法[J]. 计算机应用研究, 2018, 35(2): 466-470.
|
|
CHEN X X, WEI Y Q, REN M, et al. Weighted K-means clustering algorithm based on firefly algorithm[J]. Application Research of Computers, 2018, 35(2): 466-470.
|
13 |
KIM B, PARK J, PARK S, et al. Impedance learning for robotic contact tasks using natural actor-critic algorithm[J]. IEEE Transactions on Systems, Man, and Cybernetics Part B, Cybernetics, 2010, 40(2): 433-443.
|
14 |
桂熙. 基于MADDPG算法的多个智能体协同控制[D]. 武汉: 武汉纺织大学, 2020.GUI X. Research on multi-agent cooperative control based on MADDPG Algorithm[D]. Wuhan: Wuhan Textile University, 2020.
|