Energy Storage Science and Technology ›› 2020, Vol. 9 ›› Issue (2): 515-522.doi: 10.19799/j.cnki.2095-4239.2020.0054
Previous Articles Next Articles
RONG Xiaohui1(), LU Yaxiang1, QI Xingguo2, ZHOU Quan1,2, KONG Weihe2, TANG Kun2, CHEN Liquan1, HU Yongsheng1,2()
Received:
2020-01-22
Revised:
2020-02-19
Online:
2020-03-05
Published:
2020-03-15
Contact:
Yongsheng HU
E-mail:rong@iphy.ac.cn;yshu@iphy.ac.cn
CLC Number:
RONG Xiaohui, LU Yaxiang, QI Xingguo, ZHOU Quan, KONG Weihe, TANG Kun, CHEN Liquan, HU Yongsheng. Na-ion batteries: From fundamental research to engineering exploration[J]. Energy Storage Science and Technology, 2020, 9(2): 515-522.
Table 1
Performance comparison of lead-acid batteries, Li-ion batteries, and Na-ion batteries"
指 标 | 铅酸电池 | 锂离子电池 (磷酸铁锂/石墨体系) | 钠离子电池 (铜基氧化物/煤基碳体系) |
---|---|---|---|
质量能量密度① | 30~50 W·h/kg | 120~180 W·h /kg | 100~150 W·h /kg |
体积能量密度① | 60~100 W·h /L | 200~350 W·h /L | 180~280 W·h /L |
单位能量原料成本②,③ | 0.40元/ W·h | 0.43元/W·h | 0.29元/(W·h) |
循环寿命① | 300~500次 | 3000次以上 | 2000次以上 |
平均工作电压① | 2.0 V | 3.2 V | 3.2 V |
-20oC容量保持率 | 小于60% | 小于70% | 88%以上 |
耐过放电 | 差 | 差 | 可放电至0 V |
安全性 | 优 | 优 | 优 |
环保特性 | 差 | 优 | 优 |
1 | 陆雅翔, 赵成龙, 容晓晖, 等 . 室温钠离子电池材料及器件研究进展[J]. 物理学报, 2018, 67(12): 120601. |
LU Y X , ZHAO C L , RONG X H , et al . Research progress of materials and devices for room-temperature Na-ion batteries[J]. Acta Physica Sinica, 2018, 67(12): 120601. | |
2 | LI Y , LU Y , ZHAO C , et al . Recent advances of electrode materials for low-cost sodium-ion batteries towards practical application for grid energy storage[J]. Energy Storage Mater., 2017, 7: 130-151. |
3 | PAN H , HU Y S , CHEN L . Room-temperature stationary sodium-ion batteries for large-scale electric energy storage[J]. Energy Environ. Sci., 2013, 6(8): 2338-2360. |
4 | LU Y , RONG X , HU Y S , et al . Research and development of advanced battery materials in China[J]. Energy Storage Mater., 2019, 23: 144-153. |
5 | HU Y S , KOMABA S , FORSYTH M , et al . A new emerging technology: Na-ion batteries[J]. Small Methods, 2019, 3: 1900184. |
6 | PAN H , HU Y S , LI H , et al . Recent progress in structure study of electrode materials for room-temperature sodium-ion stationary batteries[J]. Sci. Sin. Chim., 2014, 44: 1269-1279. |
7 | HU Y S , LU Y . 2019 Nobel prize for the Li-ion batteries and new opportunities and challenges in Na-ion batteries[J]. ACS Energy Lett., 2019, 4: 2689-2690. |
8 | ZHAO C , LU Y , CHEN L , et al . Flexible Na batteries[J]. InfoMat., 2019, 2(1): 126-38. |
9 | TAKEDA Y , NAKAHARA K , NISHIJIMA M , et al . Sodium deintercalation from sodium iron oxide[J]. Mater. Res. Bull., 1994, 29: 659-666. |
10 | YABUUCHI N , YOSHIDA H , KOMABA S . Crystal structures and electrode performance of alpha-NaFeO2 for rechargeable sodium batteries[J]. Electrochemistry, 2012, 80: 716-719. |
11 | YABUUCHI N , KAJIYAMA M , IWATATE J , et al . P2-type Na x [Fe1/2Mn1/2]O2 made from earth-abundant elements for rechargeable Na batteries[J]. Nat. Mater., 2012, 11: 512-517. |
12 | KIM D , LEE E, SLATER M , et al . Layered Na[Ni1/3Fe1/3Mn1/3]O2 cathodes for Na-ion battery application[J]. Electrochem. Commun., 2012, 18: 66-69. |
13 | XU S Y , WU X Y , LI Y M , et al . Novel copper redox-based cathode materials for room-temperature sodium-ion batteries[J]. Chin. Phys. B, 2014, 23: 118202. |
14 | LI Y , YANG Z , XU S , et al . Air-stable copper-based P2-Na7/9Cu2/9Fe1/9Mn2/3O2 as a new positive electrode material for sodium-ion batteries[J]. Adv. Sci., 2015, 2: 1500031. |
15 | MU L , XU S , LI Y , et al . Prototype sodium-ion batteries using an air-stable and Co/Ni-free O3-layered metal oxide cathode[J]. Adv. Mater., 2015, 27: 6928-6933. |
16 | RONG X , LIU J , HU E , et al . Structure-induced reversible anionic redox activity in Na layered oxide cathode[J]. Joule, 2018, 2: 125-140. |
17 | RONG X , HU E , LU Y , et al . Anionic redox reaction-induced high-capacity and low-strain cathode with suppressed phase transition[J]. Joule, 2019, 3: 503-517. |
18 | LI Y , HU Y S , LI H , et al . A superior low-cost amorphous carbon anode made from pitch and lignin for sodium-ion batteries[J]. J. Mater. Chem. A, 2016, 4: 96-104. |
19 | LI Y , MU L , HU Y-S , et al . Pitch-derived amorphous carbon as high performance anode for sodium-ion batteries[J]. Energy Storage Mater., 2016, 2: 139-145. |
20 | QI Y , LU Y , DING F , et al . Slope-dominated carbon anode with high specific capacity and superior rate capability for high safety Na-ion batteries[J]. Angew. Chem. Int. Edit., 2019, 58: 4361-4365. |
21 | LI Y , HU Y S , QI X , et al . Advanced sodium-ion batteries using superior low cost pyrolyzed anthracite anode: Towards practical applications[J]. Energy Storage Mater., 2016, 5: 191-197. |
22 | LU Y , ZHAO C , QI X , et al . Pre-oxidation-tuned microstructures of carbon anodes derived from pitch for enhancing Na storage performance[J]. Adv. Energy Mater., 2018, 8: 1800108. |
23 | MENG Q , LU Y , DING F , et al . Tuning the closed pore structure of hard carbons with the highest Na storage capacity[J]. ACS Energy Lett., 2019, 4(11): 2608-2612. |
24 | 方铮, 曹余良, 胡勇胜, 等 . 室温钠离子电池技术经济性分析[J]. 储能科学与技术, 2016, 5(2): 149-158. |
FANG Z , CAO Y L , HU Y S , et al . Economic analysis for room-temperature sodium-ion battery technologies[J]. Energy Storage Science and Technology, 2016, 5(2): 149-158. |
[1] | Wei ZENG, Junjie XIONG, Jianlin LI, Suliang MA, Yiwen WU. Optimal configuration of energy storage power station in multi-energy system based on weight adaptive whale optimization algorithm [J]. Energy Storage Science and Technology, 2022, 11(7): 2241-2249. |
[2] | Zhen YAO, Qi ZHANG, Rui WANG, Qinghua LIU, Baoguo WANG, Ping MIAO. Application of biomass derived carbon materials in all vanadium flow battery electrodes [J]. Energy Storage Science and Technology, 2022, 11(7): 2083-2091. |
[3] | Yu SHI, Zhong ZHANG, Jingying YANG, Wei QIAN, Hao LI, Xiang ZHAO, Xintong YANG. Opportunity cost modelling and market strategy of energy storage participating in the AGC market [J]. Energy Storage Science and Technology, 2022, 11(7): 2366-2373. |
[4] | Jianmin HAN, Feiyu XUE, Shuangyin LIANG, Tianshu QIAO. Hybrid energy storage system assisted frequency modulation simulation of the coal-fired unit under fuzzy control optimization [J]. Energy Storage Science and Technology, 2022, 11(7): 2188-2196. |
[5] | Zhiying LU, Shan JIANG, Quanlong LI, Kexin MA, Teng FU, Zhigang ZHENG, Zhicheng LIU, Miao LI, Yongsheng LIANG, Zhifei DONG. Open-circuit voltage variation during charge and shelf phases of an all-vanadium liquid flow battery [J]. Energy Storage Science and Technology, 2022, 11(7): 2046-2050. |
[6] | Shufeng DONG, Lingchong LIU, Kunjie TANG, Haiqi ZHAO, Chengsi XU, Liheng LIN. The teaching method of energy storage control experiment based on Simulink and low-code controller [J]. Energy Storage Science and Technology, 2022, 11(7): 2386-2397. |
[7] | Xiongwen XU, Yang NIE, Jian TU, Zheng XU, Jian XIE, Xinbing ZHAO. Abuse performance of pouch-type Na-ion batteries based on Prussian blue cathode [J]. Energy Storage Science and Technology, 2022, 11(7): 2030-2039. |
[8] | Yuhan GUO, Dan YU, Peng YANG, Ziji WANG, Jintao WANG. Optimal capacity allocation method of a distributed energy storage system based on greedy algorithm [J]. Energy Storage Science and Technology, 2022, 11(7): 2295-2304. |
[9] | Xingzhong YUAN, Bin HU, Fan GUO, Huan YAN, Honggang JIA, Zhou SU. EU energy storage policies and market mechanism and its reference to China [J]. Energy Storage Science and Technology, 2022, 11(7): 2344-2353. |
[10] | Guojing LIU, Bingjie LI, Xiaoyan HU, Fen YUE, Jiqiang XU. Australia policy mechanisms and business models for energy storage and their applications to china [J]. Energy Storage Science and Technology, 2022, 11(7): 2332-2343. |
[11] | Xiaojie YANG, Haiyun WANG, Zhongchuan JIANG, Zhanghua SONG. Bidirectional power flow strategy design of BLDC motor for flywheel energy storage [J]. Energy Storage Science and Technology, 2022, 11(7): 2233-2240. |
[12] | Hongtao LI, Shuai ZHANG, Xudong LI, Yunguang JI, Mingxu SUN, Xin LI. Application of single tank energy storage and heat exchange system in hot air non-woven fabric process [J]. Energy Storage Science and Technology, 2022, 11(7): 2250-2257. |
[13] | Tian WU, Mincheng LIN, Hao HAI, Haiyu SUN, Zhaoyin WEN, Fuyuan MA. Development of high-power Ni-MH battery system for primary frequency modulation [J]. Energy Storage Science and Technology, 2022, 11(7): 2213-2221. |
[14] | Xiaoyu SHEN, Guanjun CEN, Ronghan QIAO, Jing ZHU, Hongxiang JI, Mengyu TIAN, Zhou JIN, Yong YAN, Yida WU, Yuanjie ZHAN, Hailong YU, Liubin BEN, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Apr. 1, 2022 to May 31, 2022) [J]. Energy Storage Science and Technology, 2022, 11(7): 2007-2022. |
[15] | ZHOU Wei, FU Dongju, LIU Weifeng, CHEN Jianjun, HU Zhao, ZENG Xierong. Research progress on recycling technology of waste lithium iron phosphate power battery [J]. Energy Storage Science and Technology, 2022, 11(6): 1854-1864. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||