储能科学与技术 ›› 2016, Vol. 5 ›› Issue (5): 762-774.doi: 10.12028/j.issn.2095-4239.2016.062
赵俊年,武怿达,詹元杰,陈宇阳,陈 彬,王 昊,俞海龙,贲留斌,刘燕燕,黄学杰
收稿日期:
2016-08-19
修回日期:
2016-08-20
出版日期:
2016-09-01
发布日期:
2016-09-01
通讯作者:
黄学杰,研究员,研究方向为锂电池及其关键材料,E-mail:xjhuang@iphy.ac.cn。
作者简介:
赵俊年(1992—),男,博士研究生,研究方向为无负极锂电池,E-mail:13501388124@163.com;
ZHAO Junnian, WU Yida, ZHAN Yuanjie, CHEN Yuyang, CHEN Bin, WANG Hao, YU Hailong, BEN Liubin, #br# LIU Yanyan, HUANG Xuejie
Received:
2016-08-19
Revised:
2016-08-20
Online:
2016-09-01
Published:
2016-09-01
摘要: 该文是一篇近两个月的锂电池文献评述,以“lithium”和“batter*”为关键词检索了Web of Science从2016年6月1日至2016年7月31日上线的锂电池研究论文,共有1880篇,选择其中100篇加以评论。正极材料主要研究了三元材料、富锂相材料和尖晶石材料的结构和表面结构随电化学脱嵌锂变化以及掺杂和表面包覆及界面层改进对其循环寿命的影响。硅基复合负极材料研究侧重于嵌脱锂机理以及SEI界面层,电解液添加剂、固态电解质电池、锂硫电池、锂空气电池的论文也有多篇。原位分析偏重于界面SEI和电极反应机理,理论模拟工作涵盖储锂机理、动力学、界面SEI形成机理分析和固体电解质等。除了以材料为主的研究之外,还有多篇针对电池、电极结构进行分析的研究论文。
赵俊年,武怿达,詹元杰,陈宇阳,陈 彬,王 昊,俞海龙,贲留斌,刘燕燕,黄学杰. 锂电池百篇论文点评(2016.6.1—2016.7.31)[J]. 储能科学与技术, 2016, 5(5): 762-774.
ZHAO Junnian, WU Yida, ZHAN Yuanjie, CHEN Yuyang, CHEN Bin, WANG Hao, YU Hailong, BEN Liubin, . Reviews of selected 100 recent papers for lithium batteries(Jun. 1,2016 to Jul. 31,2016)[J]. Energy Storage Science and Technology, 2016, 5(5): 762-774.
[1] VALLVERDU G,MINVIELLE M,ANDREU N,et al. First principle study of the surface reactivity of layered lithium oxides LiMO2 (M= Ni, Mn, Co)[J]. Surface Science,2016,649:46-55. [2] YAMAMOTO Y,KATAOKA K,AKIMOTO J,et al. Quantitative analysis of cation mixing and local valence states in LiNixMn2-xO4 using concurrent HARECXS and HARECES measurements[J]. Microscopy,2016,65(3):253-262. [3] QI Y,MU L,ZHAO J,et al. pH-regulative synthesis of Na3(VPO4) [4] ISHIDZU K,OKA Y,NAKAMURA T. Lattice volume change during charge/discharge reaction and cycle performance of Li NixCoyMnzO2[J]. Solid State Ionics,2016,288:176-179. [5] HE X,WANG J,WANG R,et al. A 3D porous Li-rich cathode material with an in situ modified surface for high performance lithium ion batteries with reduced voltage decay[J]. Journal of Materials Chemistry A,2016,4(19):7230-7237. [6] NAYAK P K,GRINBLAT J,LEVI M,et al. Al doping for mitigating the capacity fading and voltage decay of layered Li and Mn-rich cathodes for Li-ion batteries[J]. Advanced Energy Materials,2016,6(8):doi: 10.1002/aenm.201502398. [7] LEE I,KIM J,HAN S,et al. Communication-preparation of highly monodisperse Ni-rich cathode material for lithium ion batteries[J]. Journal of the Electrochemical Society,2016,163(7): A1336-A1339. [8] MOHANTY D,DAHLBERG K,KING D M,et al. Modification of Ni-rich FCG NMC and NCA cathodes by atomic layer deposition:Preventing surface phase transitions for high-voltage lithium-ion batteries[J]. Scientific Reports,2016,6,doi:10.1038/ srep26532. [9] ISHIDA N,TAMURA N,KITAMURA N,et al. Crystal and electronic structure analysis and thermodynamic stabilities for electrochemically or chemically delithiated Li1.2-xMn0.54Ni0.13 Co0.13O2[J]. Journal of Power Sources,2016,319:255-261. [10] LIU H,CHEN Y,HY S,et al. Operando lithium dynamics in the Li-rich layered oxide cathode material via neutron diffraction[J]. Advanced Energy Materials,2016,6(7):doi: 10.1002/aenm. 201502143. [11] LONGO R C,KONG F,LIANG C,et al. Transition metal ordering optimization for high-reversible capacity positive electrode materials in the Li-Ni-Co-Mn pseudoquaternary system[J]. Journal of Physical Chemistry C,2016,120(16):8540-8549. [12] LUO K,ROBERTS M R,HAO R,et al. Charge-compensation in 3D-transition-metal-oxide intercalation cathodes through the generation of localized electron holes on oxygen[J]. Nature Chemistry,2016,8(7):684-691. [13] KITTA M,KOHYAMA M. Stability of the LiMn2O4 surface in a LiPF6-based non-aqueous electrolyte studied by in-situ atomic force microscopy[J]. Japanese Journal of Applied Physics,2016, 55(6):65801. [14] GABRIELLI G,AXMANN P,DIEMANT T,et al. Combining optimized particle morphology with a niobium-based coating for long cycling-life, high-voltage lithium-ion batteries[J]. Chem.Sus. Chem.,2016,9(13):1670-1679. [15] AMOS C D,ROLDAN M A,VARELA M,et al. Revealing the reconstructed surface of Li Mn2O4[J]. Nano Letters,2016, 16(5):2899-2906. [16] KOZAWA T,MURAKAMI T,NAITO M. Insertion of lattice strains into ordered LiNi0.5Mn1.5O4 spinel by mechanical stress:A comparison of perfect versus imperfect structures as a cathode for Li-ion batteries[J]. Journal of Power Sources,2016,320: 120-126. [17] MAO J,DAI K,XUAN M,et al. Effect of chromium and niobium doping on the morphology and electrochemical performance of high-voltage spinel LiNi0.5Mn1.5O4 cathode material[J]. ACS Applied Materials & Interfaces,2016,8(14):9116-9124. [18] MEI T,PI W,ZHANG L,et al. Synthesis of shell-in-shell LiNi0.5Mn1.5O4 hollow microspheres and their enhanced performance for lithium ion batteries[J]. Materials Letters,2016,173: 141-144. [19] HWANG T,LEE J K,MUN J,et al. Surface-modified carbon nanotube coating on high-voltage LiNi0.5Mn1.5O4 cathodes for lithium ion batteries[J]. Journal of Power Sources,2016,322: 40-48. [20] WANG J,YAO S Z,YU Y Y,et al. Improving the stability properties of 5 V lithium nickel manganese oxide spinel by surface coating with cobalt aluminum oxides for lithium ion batteries[J]. Electrochimica Acta,2016,208:310-317. [21] PANG W K,LU C Z,LIU C E,et al. Crystallographic origin of cycle decay of the high-voltage LiNi0.5Mn1.5O4 spinel lithium-ion battery electrode[J]. Physical Chemistry Chemical Physics,2016, 18(26):17183-17189. [22] ZHANG J,SHEN J,WEI C,et al. Synthesis and enhanced electrochemical performance of the honeycomb TiO2/LiMn2O4 cathode materials[J]. Journal of Solid State Electrochemistry, 2016,20(7):2063-2069. [23] CASAS-CABANAS M,KIM C,RODRIGUEZ-CARVAJAL J,et al. Atomic defects during ordering transitions in LiNi0.5Mn1.5O4 and their relationship with electrochemical properties[J]. Journal of Materials Chemistry A,2016,4(21):8255-8262. [24] ELKHAKANI S,ROCHEFORT D,MACNEIL D D. ARC study of LiFePO4 with different morphologies prepared via three synthetic routes[J]. Journal of the Electrochemical Society,2016,163(7): A1311-A1316. [25] DOBBELAERE T,MATTELAER F,DENDOOVEN J,et al. Plasma-enhanced atomic layer deposition of iron phosphate as a positive electrode for 3D lithium-ion microbatteries[J]. Chemistry of Materials,2016,28(10):3435-3445. [26] SEO I,SENTHILKUMAR B,KIM K H,et al. Atomic structural and electrochemical impact of Fe substitution on nano porous LiMnPO4[J]. Journal of Power Sources,2016,320:59-67. [27] STROBRIDGE F C,LIU H,LESKES M,et al. Unraveling the complex delithiation mechanisms of olivine-type cathode materials, LiFexCo1-xPO4[J]. Chemistry of Materials,2016,28(11): 3676-3690. [28] FAN X,ZHU Y,LUO C,et al. Pomegranate-structured conversion-reaction cathode with a built-in Li source for high-energy Li-ion batteries[J]. ACS Nano,2016,10(5):5567-5577. [29] TAKEUCHI Y,YAMASHITA T,KURIYAMA K,et al. Synthesis and charge-discharge performance of Li5SiN3 as a cathode material of lithium secondary batteries[J]. Journal of Solid State Electrochemistry, 2016,20(7):1885-1888. [30] ASTROVA E V,RUMYANTSEV A M,LI G V,et al. Electrochemical lithiation of silicon with varied crystallographic orientation[J]. Semi Conductors,2016,50(7):963-969. [31] PIPER D M,LEE Y,SON S B,et al. Cross-linked aluminum dioxybenzene coating for stabilization of silicon electrodes[J]. Nano Energy,2016,22:202-210. [32] MARINARO M,WEINBERGER M,WOHLFAHRT-MEHRENS M. Toward pre-lithiatied high areal capacity silicon anodes for lithium-ion batteries[J]. Electrochimica Acta,2016,206:99-107. [33] SHI F,SONG Z,ROSS P N,et al. Failure mechanisms of single-crystal silicon electrodes in lithium-ion batteries[J]. Nature Communications,2016,7:11886. [34] KRAUSE A,DORFLER S,PIWKO M,et al. High area capacity lithium-sulfur full-cell battery with prelitiathed silicon nanowire-carbon anodes for long cycling stability[J]. Scientific Reports,2016,6:doi:10.1038/srep27982. [35] TOKRANOV A,KUMAR R,LI C,et al. Control and optimization of the electrochemical and mechanical properties of the solid electrolyte interphase on silicon electrodes in lithium ion batteries[J]. Advanced Energy Materials,2016,6(8):doi: 10.1002/aenm.201502302. [36] PAZ-GARCIA J M,TAIWO O O,TUDISCO E,et al. 4D analysis of the microstructural evolution of Si-based electrodes during lithiation:Time-lapse X-ray imaging and digital volume correlation[J]. Journal of Power Sources,2016,320:196-203. [37] DUAY J,SCHRODER K W,MURUGESAN S,et al. Monitoring volumetric changes in silicon thin-film anodes through in situ optical diffraction microscopy[J]. ACS Applied Materials & Interfaces, 2016,8(27):17642-17650. [38] FEARS T M,DOUCET M,BROWNING J F,et al. Evaluating the solid electrolyte interphase formed on silicon electrodes:A comparison of ex situ X-ray photoelectron spectroscopy and in situ neutron reflectometry[J]. Physical Chemistry Chemical Physics, 2016,18(20):13927-13940. [39] CHEN M,WANG Z L,WANG A N,et al. Novel self-assembled natural graphite based composite anodes with improved kinetic properties in lithium-ion batteries[J]. Journal of Materials Chemistry A,2016,4(25):9865-9872. [40] KWON H T,LEE C K,JEON K J,et al. Silicon diphosphide:A Si-based three-dimensional crystalline framework as a high performance Li-ion battery anode[J]. ACS Nano,2016, 10(6):5701-5709. [41] PARK G O,YOON J,SHON J K,et al. Discovering a dual-buffer effect for lithium storage:Durable nanostructured ordered mesoporous Co-Sn intermetallic electrodes[J]. Advanced Functional Materials,2016,26(17):2800-2808. [42] HONG S A,LEE S B,JOO O S,et al. Synthesis of lithium titanium oxide (Li4Ti5O12) with ultrathin carbon layer using supercritical fluids for anode materials in lithium batteries[J]. Journal of Materials Science,2016,51(13):6220-6234. [43] GRIFFITH K J,FORSE A C,GRIFFIN J M,et al. High-rate intercalation without nanostructuring in metastable Nb2O5 bronze phases[J]. Journal of the American Chemical Society,2016, 138(28):8888-8899. [44] HUANG T,ZHENG X,WU M,et al. Ethyl 3,3,3- trifluoropropanoate as an additive to improve the cycling performance of LiMn2O4 cathode on lithium-ion batteries at elevated temperature[J]. Journal of Power Sources,2016,318:264-269. [45] BASILE A,BHATT A I,O'MULLANE A P. Stabilizing lithium metal using ionic liquids for long-lived batteries[J]. Nature Communications,2016,7:11794. [46] SUO L,BORODIN O,SUN W,et al. Advanced high-voltage aqueous lithium-ion battery enabled by "water-in-bisalt" electrolyte[J]. Angewandte Chemie (International ed. in English),2016,55 (25):7136-7141. [47] MILIEN M S,TOTTEMPUDI U,SON M,et al. Development of lithium dimethyl phosphate as an electrolyte additive for lithium ion batteries[J]. Journal of the Electrochemical Society,2016, 163(7):A1369-A1372. [48] BROWN N R,MAKKAPATI T,TEETERS D. Stabilization of the polymer electrolyte/lithium metal electrode interface with increased ion conduction using PEO polymer/low molecular weight PE-b-PEO diblock copolymer composite bi-layer films[J]. Solid State Ionics,2016,288:207-212. [49] LINDGREN F,XU C,NIEDZICKI L,et al. SEI formation and interfacial stability of a Si electrode in a LiTDI-salt based electrolyte with FEC and VC additives for Li-ion batteries[J]. ACS Applied Materials & Interfaces,2016,8(24):15758-15766. [50] CHO Y G,PARK H,LEE J I,et al. Organogel electrolyte for high-loading silicon batteries[J]. Journal of Materials Chemistry A,2016,4(21):8005-8009. [51] ELIA G A,ULISSI U,MUELLER F,et al. A long-life lithium ion battery with enhanced electrode/electrolyte interface by using an ionic liquid solution[J]. Chemistry-A European Journal,2016, 22(20):6808-6814. [52] PETIBON R,CHEVRIER V L,AIKEN C P,et al. Studies of the capacity fade mechanisms of LiCoO2/Si-alloy:Graphite cells[J]. Journal of the Electrochemical Society,2016,163(7): A1146-A1156. [53] POPOVIC J,HASEGAWA G,MOUDRAKOVSKI I,et al. Infiltrated porous oxide monoliths as high lithium transference number electrolytes[J]. Journal of Materials Chemistry A,2016, 4(19):7135-7140. [54] ZHENG X,HUANG T,PAN Y,et al. 3,3'-sulfonyldipro- pionitrile:A novel electrolyte additive that can augment the high-voltage performance of LiNi1/3Co1/3Mn1/3O2/graphite batteries[J]. Journal of Power Sources,2016,319: 116-123. [55] LUO Y,LU T L,ZHANG Y X,et al. Enhanced electrochemical performance of LiNi0.5Mn1.5O4 cathode using an electrolyte with 3-(1,1,2,2-tetrafluoroethoxy)-1,1,2,2-tetrafluoropropane[J]. Journal of Power Sources,2016,323:134-141. [56] HAN J H,WANG M,BAI P,et al. Dendrite suppression by shock electrodeposition in charged porous media[J]. Scientific Reports, 2016,6,doi:10.1038/srep28054. [57] PHAM H Q,HWANG E H,KWON Y G,et al. Understanding the interfacial phenomena of a 4.7 V and 55 degrees C Li-ion battery with Li-rich layered oxide cathode and graphite anode and its correlation to high-energy cycling performance[J]. Journal of Power Sources,2016,323:220-230. [58] HAMENU L,LEE HS,LATIFATU M,et al. Lithium-silica nanosalt as a low-temperature electrolyte additive for lithium-ion batteries[J]. Current Applied Physics,2016,16(6):611-617. [59] RUGGERI I,ARBIZZANI C,SOAVI F. A novel concept of semi-solid, Li redox flow air (O2) battery:A breakthrough towards high energy and power batteries[J]. Electrochimica Acta,2016, 206:291-300. [60] MARCEAU H,KIM C S,PAOLELLA A,et al. In operando scanning electron microscopy and ultraviolet-visible spectroscopy studies of lithium/sulfur cells using all solid-state polymer electrolyte[J]. Journal of Power Sources,2016,319:247-254. [61] CAO R G,CHEN J Z,HAN K S,et al. Effect of the anion activity on the stability of li metal anodes in lithium-sulfur batteries[J]. Advanced Functional Materials,2016,26(18):3059-3066. [62] LI X,LUSHINGTON A,SUN Q,et al. Safe and durable high-temperature lithium-sulfur batteries via molecular layer deposited coating[J]. Nano Lett.,2016,16(6):3545-3549. [63] ZHENG D,YANG X Q,QU D. Stability of the solid electrolyte interface on the Li electrode in Li-S batteries[J]. ACS Applied Materials & Interfaces,2016,8(16):10360-10366. [64] CHEN H,LU Y C. A high-energy-density multiple redox semi-solid-liquid flow battery[J]. Advanced Energy Materials, 2016,6(8):doi: 10.1002/aenm.201502183. [65] FANG R,ZHAO S,Hou P,et al. 3D interconnected electrode materials with ultrahigh areal sulfur loading for Li-S batteries[J]. Advanced Materials,2016,28:3374-3382. [66] GUO Y S,SMITH R B,YU Z H,et al. Li intercalation into graphite:Direct optical imaging and cahn-hilliard reaction dynamics[J]. Journal of Physical Chemistry Letters,2016, 7(11):2151-2156. [67] GAN Z,GU M,TANG J,et al. Direct mapping of charge distribution during lithiation of ge nanowires using off-axis electron holography[J]. Nano Lett.,2016,16(6):3748-3753. [68] DASH R,PANNALA S. Theoretical limits of energy density in silicon-carbon composite anode based lithium ion batteries[J]. Scientific Reports,2016,6:27449. [69] LARFAILLOU S,GUY-BOUYSSOU D,LE CRAS F,et al. Comprehensive characterization of all-solid-state thin films commercial microbatteries by electrochemical impedance spectroscopy[J]. Journal of Power Sources,2016,319:139-146. [70] SUN F,MARKOTTER H,DONG K,et al. Investigation of failure mechanisms in silicon based half cells during the first cycle by micro X-ray tomography and radiography[J]. Journal of Power Sources,2016,321:174-184. [71] GAN Z F,GU M,TANG J S,et al. Direct mapping of charge distribution during lithiation of ge nanowires using off-axis electron holography[J]. Nano Letters,2016,16(6):3748-3753. [72] MAKIMURA Y,SASAKI T,OKA H,et al. Studying the charging process of a lithium-ion battery toward 10 V by in situ X-ray absorption and diffraction:Lithium insertion/extraction with side reactions at positive and negative electrodes[J]. Journal of the Electrochemical Society,2016,163(7):A1450-A1456. [73] LANDESFEIND J,HATTENDORFF J,EHRL A,et al. Tortuosity determination of battery electrodes and separators by impedance spectroscopy[J]. Journal of the Electrochemical Society,2016,163(7):A1373-A1387. [74] MAIBACH J,LINDGREN F,ERIKSSON H,et al. Electric potential gradient at the buried interface between lithium-ion battery electrodes and the SEI observed using photoelectron spectroscopy[J]. Journal of Physical Chemistry Letters,2016,7(10):1775- 1780. [75] CHEONG J Y,CHANG J H,SEO H K,et al. Growth dynamics of solid electrolyte interphase layer on SnO2 nanotubes realized by graphene liquid cell electron microscopy[J]. Nano Energy, 2016,25:154-160. [76] SUN F,MARKOTTER H,ZHOU D,et al. In situ radiographic investigation of (De) lithiation mechanisms in a tin-electrode lithium-ion battery[J]. Chem. Sus. Chem.,2016,9(9):946-950. [77] BACH P,VALENCIA-JAIME I,RUETT U,et al. Electrochemical Lithiation cycles of gold anodes observed by in situ high-energy X-ray diffraction[J]. Chemistry of Materials,2016,28(9): 2941-2948. [78] PIETSCH P,HESS M,LUDWIG W,et al. Combining operando synchrotron X-ray tomographic microscopy and scanning X-ray diffraction to study lithium ion batteries[J]. Scientific Reports,2016, [79] HE K,ZHANG S,LI J,et al. Visualizing non-equilibrium lithiation of spinel oxide via in situ transmission electron microscopy[J]. Nature Communications,2016,7:doi: 10.1038/ ncomms11441. [80] LIU Y M,G NICOLAU B,ESBENSHADE J L,et al. Characterization of the cathode electrolyte interface in lithium ion batteries by desorption electrospray ionization mass spectrometry[J]. Analytical Chemistry,2016,88(14):7171-7177. [81] DONG X,CHEN L,SU X,et al. Flexible aqueous lithium-ion battery with high safety and large volumetric energy density[J]. Angewandte Chemie (International ed. in English),2016, 55(26):7474-7477. [82] LEE J H,YOON C S,HWANG J Y,et al. High-energy-density lithium-ion battery using a carbon-nanotube-Si composite anode and a compositionally graded Li Ni0.85Co0.05Mn0.10O2 cathode[J]. Energy & Environmental Science,2016,9(6):2152-2158. [83] NA W,LEE AS,LEE J H,et al. Lithium dendrite suppression with UV-curable polysilsesquioxane separator binders[J]. ACS Applied Materials & Interfaces,2016,8(20):12852-12858. [84] HONG S,JO H,SONG S W. Lithium diffusivity of tin-based film model electrodes for lithium-ion batteries[J]. Journal of Electrochemical Science and Technology,2015,6(4):116-120. [85] LI B,LI S M,XU J J,et al. A new configured lithiated silicon-sulfur battery built on 3D graphene with superior electrochemical performances[J]. Energy & Environmental Science,2016,9(6):2025-2030. [86] BERECIBAR M,DEVRIENDT F,DUBARRY M,et al. Online state of health estimation on NMC cells based on predictive analytics[J]. Journal of Power Sources,2016,320:239-250. [87] KAWAURA H,HARADA M,KONDO Y,et al. Operando measurement of solid electrolyte interphase formation at working electrode of Li-ion battery by time-slicing neutron reflectometry[J]. ACS Applied Materials & Interfaces,2016,8(15):9540-9544. [88] VIVEK J P,BERRY N,PAPAGEORGIOU G,et al. Mechanistic insight into the superoxide induced ring opening in propylene carbonate based electrolytes using in situ surface-enhanced infrared spectroscopy[J]. Journal of the American Chemical Society,2016, 138(11):3745-3751. [89] ALEXANDER J P,ELEANOR G,Sang B L,et al. The reaction current distribution in battery electrode materials revealed by XPS-based state-of-charge mapping[J]. Physical Chemistry Chemical Physics,2016,doi:10.1039/C6CP03271K. [90] LI M,ZHU W,ZHANG P,et al. Graphene-analogues boron nitride nanosheets confining ionic liquids:A high-performance quasi-liquid solid electrolyte[J]. Small,2016,12(26):3535- 3542. [91] EL KHAKANI S,ROCHEFORT D,MACNEIL D D. ARC study of LiFePO4 with different morphologies prepared via three synthetic routes[J]. Journal of the Electrochemical Society,2016,163(7): A1311-A1316. [92] SEO D H,LEE J,URBAN A,et al. The structural and chemical origin of the oxygen redox activity in layered and cation-disordered Li-excess cathode materials[J]. Nature Chemistry,2016,8(7): 692-697. [93] TAN J W,RYAN E M. Computational study of electro-convection effects on dendrite growth in batteries[J]. Journal of Power Sources,2016,323:67-77. [94] BRADY N W,KNEHR K W,CAMA C A,et al. Galvanostatic interruption of lithium insertion into magnetite:Evidence of surface layer formation[J]. Journal of Power Sources,2016,321: 106-111. [95] WANG Z Y,SANTHANAGOPALAN D,ZHANG W,et al. In situ STEM-EELS observation of nanoscale interfacial phenomena in all-solid-state batteries[J]. Nano Letters,2016,16(6):3760- 3767. [96] ABDELLAHI A,URBAN A,DACEK S,et al. The effect of cation disorder on the average Li intercalation voltage of transition-metal oxides[J]. Chemistry of Materials,2016, 28(11): 3659-3665. [97] ADAMS D J. Quantum mechanical theory diffusion in solids. An application to H in silicon and Li in LiFePO4[J]. Solid State Ionics,2016,290:116-120. [98] OKUMURA T,YAMAGUCHI Y,KOBAYASHI H. X-ray absorption near-edge structures of LiMn2O4 and LiNi0.5Mn1.5O4 spinet oxides for lithium-ion batteries:The first-principles calculation study[J]. Physical Chemistry Chemical Physics, 2016,18(27):17827-17830. [99] LIN R,AMRUTE A P,KRUMEICH F,et al. Phase-controlled synthesis of iron phosphates via phosphation of β-FeOOH nanorods[J]. Cryst. Eng. Comm.,2016,18(18):3174-3185. [100] CHEN Y,SUN Y,HUANG X. Origin of the Ni/Mn ordering in high-voltage spinel LiNi0.5Mn1.5O4:The role of oxygen vacancies and cation doping[J]. Computational Materials Science,2016,115:109-116. |
[1] | 元佳宇, 李昕光, 王文超, 付程阔. 考虑质量流量的电池组蛇形冷却结构仿真[J]. 储能科学与技术, 2022, 11(7): 2274-2281. |
[2] | 时雨, 张忠, 杨晶莹, 钱薇, 李昊, 赵祥, 杨欣桐. 储能电池系统提供AGC调频的机会成本建模与市场策略[J]. 储能科学与技术, 2022, 11(7): 2366-2373. |
[3] | 黄鹏, 聂枝根, 陈峥, 舒星, 沈世全, 杨继鹏, 申江卫. 基于优化Elman神经网络的锂电池容量预测[J]. 储能科学与技术, 2022, 11(7): 2282-2294. |
[4] | 张肖洒, 王宏源, 李振彪, 夏志美. 废旧磷酸铁锂电池电极材料的硫酸化焙烧-水浸新工艺[J]. 储能科学与技术, 2022, 11(7): 2066-2074. |
[5] | 徐雄文, 聂阳, 涂健, 许峥, 谢健, 赵新兵. 普鲁士蓝正极软包钠离子电池的滥用性能[J]. 储能科学与技术, 2022, 11(7): 2030-2039. |
[6] | 裴英伟, 张红, 王星辉. 可充电锌离子电池电解质的研究进展[J]. 储能科学与技术, 2022, 11(7): 2075-2082. |
[7] | 霍思达, 薛文东, 李新丽, 李勇. 基于CiteSpace知识图谱的锂电池复合电解质可视化分析[J]. 储能科学与技术, 2022, 11(7): 2103-2113. |
[8] | 申晓宇, 岑官骏, 乔荣涵, 朱璟, 季洪祥, 田孟羽, 金周, 闫勇, 武怿达, 詹元杰, 俞海龙, 贲留斌, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2022.4.1—2022.5.31)[J]. 储能科学与技术, 2022, 11(7): 2007-2022. |
[9] | 周伟东, 黄秋, 谢晓新, 陈科君, 李薇, 邱介山. 固态锂电池聚合物电解质研究进展[J]. 储能科学与技术, 2022, 11(6): 1788-1805. |
[10] | 李一涛, 沈凯尔, 庞全全. 有机物辅助的硫化物电解质基固态电池[J]. 储能科学与技术, 2022, 11(6): 1902-1918. |
[11] | 周伟, 符冬菊, 刘伟峰, 陈建军, 胡照, 曾燮榕. 废旧磷酸铁锂动力电池回收利用研究进展[J]. 储能科学与技术, 2022, 11(6): 1854-1864. |
[12] | 张浩然, 车海英, 郭凯强, 申展, 张云龙, 陈航达, 周煌, 廖建平, 刘海梅, 马紫峰. Sn掺杂NaNi1/3Fe1/3Mn1/3-x Sn x O2 正极材料制备及其电化学性能[J]. 储能科学与技术, 2022, 11(6): 1874-1882. |
[13] | 张言, 王海, 刘朝孟, 张德柳, 王佳东, 李建中, 高宣雯, 骆文彬. 锂离子电池富镍三元正极材料NCM的研究进展[J]. 储能科学与技术, 2022, 11(6): 1693-1705. |
[14] | 乔荣涵, 岑官骏, 申晓宇, 田孟羽, 季洪祥, 田丰, 起文斌, 金周, 武怿达, 詹元杰, 闫勇, 贲留斌, 俞海龙, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2022.2.1—2022.3.31)[J]. 储能科学与技术, 2022, 11(5): 1289-1304. |
[15] | 汪红辉, 吴泽钦, 储德韧. 轻度过放模式下钛酸锂电池性能及热安全性[J]. 储能科学与技术, 2022, 11(5): 1305-1313. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||