储能科学与技术 ›› 2018, Vol. 7 ›› Issue (3): 404-417.doi: 10.12028/j.issn.2095-4239.2018.0007
张晓妍, 任宇飞, 高洁, 张兰, 张海涛
收稿日期:
2018-01-18
修回日期:
2018-03-15
出版日期:
2018-05-01
发布日期:
2018-05-01
通讯作者:
张海涛,博士,研究员,研究方向为能源材料,E-mail:htzhang@ipe.ac.cn
作者简介:
张晓妍(1989-),女,硕士,研究实习员,研究方向为高压锂离子电池电解液,E-mail:xyzh@ipe.ac.cn
基金资助:
ZHANG Xiaoyan, REN Yufei, GAO Jie, ZHANG Lan, ZHANG Haitao
Received:
2018-01-18
Revised:
2018-03-15
Online:
2018-05-01
Published:
2018-05-01
摘要: 动力电池是新能源汽车的核心部件,而电解液是制约动力电池发展的关键。电解液一般由碳酸酯类溶剂、锂盐和添加剂组成,其性质对电池的高低温、倍率、寿命等性能有显著影响。高比能动力电池所需电解液的主要开发策略是利用功能添加剂在电池正、负极同时形成稳定的保护膜,同时稳定界面。文章回顾了近年来匹配高压正极材料和高容量硅碳负极材料所需添加剂的组成和基本功能,论述了添加剂作用机理和发展趋势,认为300 W·h/Kg高能量密度电池电解液的关键在于开发新型多功能添加剂。
中图分类号:
张晓妍, 任宇飞, 高洁, 张兰, 张海涛. 动力电池电解液用添加剂的研究进展[J]. 储能科学与技术, 2018, 7(3): 404-417.
ZHANG Xiaoyan, REN Yufei, GAO Jie, ZHANG Lan, ZHANG Haitao. Progress of electrolyte additives for high-capacity power lithium ion batteries[J]. Energy Storage Science and Technology, 2018, 7(3): 404-417.
[1] 节能与新能源汽车技术路线图战略咨询委员会, 中国汽车工程学会. 节能与新能源汽车技术路线图[M]. 北京:机械工业出版社, 2016. Energy Conservation and New Energy Vehicle Technology Roadmap Strategic Advisory Committee, Society of Automotive Engineers of China. Technology roadmap for energy saving and new energy vehicles[M]. Beijing:China Machine Press, 2016. [2] 义夫正树, 拉尔夫・J.布拉德, 小泽昭弥, 等. 锂离子电池:科学与技术[M]. 北京:化学工业出版社, 2015. YOSHIO M, BRODD R, KOZAWA A et al. Lithium-ion batteries, science and technologies[M]. Beijing:Chemical Industry Press, 2015. [3] 吴娇杨, 刘品, 胡勇胜, 等. 锂离子电池和金属锂离子电池的能量密度计算[J]. 储能科学与技术, 2016, 5(4):443-453. WU J, LIU P, HU Y, et al. Calculation on energy densities of lithium ion batteries and metallic lithium ion batteries[J]. Energy Storage Science and Technology, 2016, 5(4):443-453. [4] 郑洪河. 锂离子电池电解质[M]. 北京:化学工业出版社, 2007. ZHENG H. Electrolyte for lithium-ion battery[M]. Beijing:Chemical Industry Press, 2007. [5] JOW T R, XU K, BORODIN M U. Electrolytes for lithium and lithium-ion batteries[M]. Berlin:Springer, 2014. [6] U K. Electrolytes and interphases in Li-ion batteries and beyond[J]. Chem. Rev., 2014, 114(23):11503-11618. [7] TARASCON J M, ARMAND M. Issues and challenges facing rechargeable lithium batteries[J]. Nature, 2001, 414(6861):359. [8] ARMAND M, TARASCON J M. Building better batteries[J]. Nature, 2008, 451(7179):652. [9] GOODENOUGH J B, PARK K S. The Li-ion rechargeable battery:A perspective[J]. Journal of the American Chemical Society, 2013, 135(4):1167. [10] LIN F, MARKUS I M, NORDLUND D, et al. Surface reconstruction and chemical evolution of stoichiometric layered cathode materials for lithium-ion batteries[J]. Nature Communications, 2014, 5:3529. [11] ZHANG L, MA Y, DU C, et al. Research on the high-voltage electrolyte for lithium ion batteries[J]. Progress in Chemistry, 2014, 26(4):553-559. [12] HAREGEWOIN A M, WOTANGO A S, HWANG B J. Electrolyte additives for lithium ion battery electrodes:Progress and perspectives[J]. Energy & Environmental Science, 2016, 9(6):1955-1988. [13] YAN G, LI X, WANG Z, et al. Tris(trimethylsilyl)phosphate:A film-forming additive for high voltage cathode material in lithium-ion batteries[J]. Journal of Power Sources, 2014, 248(4):1306-1311. [14] KRAYTSBERG A A, EIN-ELI Y. A review of 5 volt cathode materials for advanced lithium-ion batteries[J]. Advanced Energy Materials, 2012, 2(8):922-939. [15] MEISTER P, JIA H, LI J, et al. Best practice:Performance and cost evaluation of lithium ion battery active materials with special emphasis on energy efficiency[J]. Chemistry of Materials, 2016, 28(20):7203-7217. [16] MANTHIRAM A, CHEMELEWSKI K, LEE E S. A perspective on the high-voltage LiNi0.5Mn1.5O4 spinel cathode for lithium-ion batteries[J]. Energy & Environmental Science, 2014, 7(4):1339-1350. [17] YI T F, MEI J, ZHU Y R. Key strategies for enhancing the cycling stability and rate capacity of LiNi0.5Mn1.5O4 as high-voltage cathode materials for high power lithium-ion batteries[J]. Journal of Power Sources, 2016, 316:85-105. [18] MA J, HU P, CUI G, et al. Surface and interface issues in spinel LiNi0.5Mn1.5O4:Insights into a potential cathode material for high energy density lithium ion batteries[J]. Chemistry of Materials, 2016, 47(31):3578-3606. [19] SONG Y M, KIM C K, KIM K E, et al. Exploiting chemically and electrochemically reactive phosphite derivatives for high-voltage spinel LiNi0.5Mn1.5O4 cathodes[J]. Journal of Power Sources, 2016, 302:30. [20] LI J, XING L, ZHANG R, et al. Tris(trimethylsilyl)borate as an electrolyte additive for improving interfacial stability of high voltage layered lithium-rich oxide cathode/carbonate-based electrolyte[J]. Journal of Power Sources, 2015, 285:360-366. [21] XU M, TSIOUVARAS N, GARSUCH A, et al. Generation of cathode passivation films via oxidation of lithium bis(oxalato) borate on high voltage spinel (LiNi0.5Mn1.5O4)[J]. J. Phys. Chemc., 2012, 118(14):7363-7368. [22] WANG Z, XING L, LI J, et al. Trimethyl borate as an electrolyte additive for high potential layered cathode with concurrent improvement of rate capability and cyclic stability[J]. Electrochimica Acta, 2015, 184:40-46. [23] ROZIER P, TARASCON J M. Review-Li-rich layered oxide cathodes for nextgeneration Li-ion batteries:Chances and challenges[J]. Journal of the Electrochemistry Society, 2015, 162(14):A2490-A2499. [24] YAN J H, LIU X B, LI B Y. Recent progress in Li-rich layered oxides as cathode materials for Li-ion batteries[J]. RSC Advances, 2014, 4(4):63268-63284. [25] CHA J, HAN J G, HWANG J, et al. Mechanisms for electrochemical performance enhancement by the salt-type electrolyte additive, lithium difluoro(oxalato)borate, in high-voltage lithium-ion batteries[J]. Journal of Power Sources, 2017, 357:97-106. [26] LIU W, OH P, LIU X, et al. Nickel-rich layered lithium transition-metal oxide for high-energy lithium-ion batteries[J]. Angewandte Chemie (International ed. in English), 2015, 46(26):4440-4457. [27] JANG S H, YIM T. Effect of silyl ether-functinoalized dimethoxydimethylsilane on electrochemical performance of a Ni-rich NCM cathode[J]. Chemphyschem:A European Journal of Chemical Physics and Physical Chemistry, 2017, 18(23):3402-3406. [28] WANG H, GE W, WANG F, et al. Facile fabrication of ethoxy-functional polysiloxane wrapped LiNi0.6Co0.2Mn0.2O2 cathode with improved cycling performance for rechargeable Li-ion battery[J]. ACS Applied Materials Interfaces, 2016:818439-18449. [29] CAREY F A, SUNDBERG R J. Part A:Structure and mechanisms[M]. Advanced Organic Chemistry, 2009. [30] XU G, PANG C, CHEN B, et al. Prescribing functional additives for treating the poor performances of high-voltage (5 V-class) LiNi0.5Mn1.5O4/MCMB Li-ion batteries[J]. Advanced Energy Materials, 2017, 1701398. [31] ZHU Y, LI Y, BETTGE M, et al. Electrolyte additive combinations that enhance performance of high-capacity Li1.2Ni0.15Mn0.55Co0.1O2-graphite cells[J]. Electrochimica Acta, 2013, 110:191-199. [32] ZHU Y, LI Y, BETTGE M, et al. Positive electrode passivation by LiDFOB electrolyte additive in high-capacity lithium-ion cells[J]. Journal of the Electrochemical Society, 2012, 159(12):A2109-A2117. [33] SU C C, HE M, PEEBLES C, et al. Functionality selection principle for high voltage lithium-ion battery electrolyte additives[J]. ACS Applied Materials & Interfaces, 2017, 9(36):30686-30695. [34] ZHENG X, WANG X, CAI X, et al. Constructing a protective interface film on layered lithium-rich cathode using an electrolyte additive with special molecule structure[J]. ACS Applied Materials & Interfaces, 2016, 8(44):30116-30125. [35] AURBACH D, GAMOLSKY K, MARKOVSKY B, et al. On the use of vinylene carbonate (VC) as an additive to electrolyte solutions for Li-ion batteries[J]. Electrochimica Acta, 2002, 47(9):1423-1439. [36] LIM S H, CHO W, KIM Y J, et al. Insight into the electrochemical behaviors of 5V-class high-voltage batteries composed of lithium-rich layered oxide with multifunctional additive[J]. Journal of Power Sources, 2016, 336:465-474. [37] XU K. Electrolytes and interphases in Li-ion batteries and beyond[J]. Chemical Reviews, 2014, 114(23):11503. [38] KANG X, ARTHUR VON C. Interfacing electrolytes with electrodes in Li ion batteries[J]. Journal of Materials Chemistry, 2011, 21(27):9849-9864. [39] XU K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries[J]. Chemical Reviews, 2004, 104(10):4303-417. [40] SHENG S Z. A review on electrolyte additives for lithium-ion batteries[J]. Journal of Power Sources, 2006, 162(2):1379-1394. [41] VERMA P, MAIRE P, NOVáK P. A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries[J]. Electrochimica Acta, 2010, 55(22):6332-6341. [42] YIM T, KWON M S, MUN J, et al. Room temperature ionic liquid-based electrolytes as an alternative to carbonate-based electrolytes[J]. Israel Journal of Chemistry, 2015, 55(5):586-598. [43] THACKERAY M M, KANG S H, JOHNSON C S, et al. Li2MnO3-stabilized LiMO2 (M=Mn, Ni, Co) electrodes for lithium-ion batteries[J]. Journal of Materials Chemistry, 2007, 17(30):3112-3125. [44] CHEN Z, QIN Y, AMINE K, et al. Role of surface coating on cathode materials for lithium-ion batteries[J]. Journal of Materials Chemistry, 2010, 20(36):7606-7612. [45] KIM J H, PARK M S, SONG J H, et al. Effect of aluminum fluoride coating on the electrochemical and thermal properties of 0.5Li2MnO3 0.5LiNi0.5Co0.2Mn0.3O2 composite material[J]. Journal of Alloys & Compounds, 2012, 517:20-25. [46] HY S, FELIX F, RICK J, et al. Direct in situ observation of Li2O evolution on Li-rich high-capacity cathode material, Li[NixLi(1-2x)/3Mn(2-x)/3]O2 (0 ≤ x ≤ 0.5)[J]. Journal of the American Chemical Society, 2014, 136(3):999-1007. [47] KANG K S, CHOI S, SONG J H, et al. Effect of additives on electrochemical performance of lithium nickel cobalt manganese oxide at high temperature[J]. Journal of Power Sources, 2014, 253(5):48-54. [48] SHI L, WANG W, WANG A, et al. Understanding the impact mechanism of the thermal effect on the porous silicon anode material preparation via magnesiothermic reduction[J]. Journal of Alloys and Compounds, 2016, 661(Supplement C):27-37. [49] XIANG K, WANG X, CHEN M, et al. Industrial waste silica preparation of silicon carbide composites and their applications in lithium-ion battery anode[J]. Journal of Alloys and Compounds, 2017, 695(Supplement C):100-105. [50] ZHOU Y, GUO H, YONG Y, et al. Introducing reduced graphene oxide to improve the electrochemical performance of silicon-based materials encapsulated by carbonized polydopamine layer for lithium ion batteries[J]. Materials Letters, 2017, 195(Supplement C):164-167. [51] WANG D, GAO M, PAN H, et al. Enhanced cycle stability of micro-sized Si/C anode material with low carbon content fabricated via spray drying and in situ carbonization[J]. Journal of Alloys and Compounds, 2014, 604(Supplement C):130-136. [52] ZHANG W, CHEN X, YONG T, et al. Multiwalled carbon nanotube webs welded with Si nanoparticles as high-performance anode for lithium-ion batteries[J]. Journal of Alloys and Compounds, 2016, 688(Part B):216-224. [53] ZHU H, YANG K, LAN H, et al. Electrochemical kinetics of Na2Ti3O7 as anode material for lithium-ion batteries[J]. Journal of Electroanalytical Chemistry, 2017, 788(Supplement C):203-209. [54] KIM J S, CHOI W, CHO K Y, et al. Effect of polyimide binder on electrochemical characteristics of surface-modified silicon anode for lithium ion batteries[J]. Journal of Power Sources, 2013, 244(Supplement C):521-526. [55] YU H, LUO M, QIAN S, et al. Ba0.9La0.1Li2Ti6O14:Advanced lithium storage material for lithium-ion batteries[J]. Electrochimica Acta, 2017, 232(Supplement C):132-141. [56] ZHANG S S. A review on electrolyte additives for lithium-ion batteries[J]. Journal of Power Sources, 2006, 162(2):1379-1394. [57] XU M, ZHOU L, HAO L, et al. Investigation and application of lithium difluoro(oxalate)borate (LiDFOB) as additive to improve the thermal stability of electrolyte for lithium-ion batteries[J]. Journal of Power Sources, 2011, 196(16):6794-6801. [58] LIU Y, LV J, FEI Y, et al. Improvement of storage performance of LiMn2O4/graphite battery with AlF3-coated LiMn2O4[J]. Ionics, 2013, 19(9):1241-1246. [59] WANG J, LIU Z, YAN G, et al. Improving the electrochemical performance of lithium vanadium fluorophosphate cathode material:Focus on interfacial stability[J]. Journal of Power Sources, 2016, 329(Supplement C):553-557. [60] WANG W, YANG S. Enhanced overall electrochemical performance of silicon/carbon anode for lithium-ion batteries using fluoroethylene carbonate as an electrolyte additive[J]. Journal of Alloys and Compounds, 2017, 695(Supplement C):3249-3255. [61] REZQITA A, SAUER M, FOELSKE A, et al. The effect of electrolyte additives on electrochemical performance of silicon/mesoporous carbon (Si/MC) for anode materials for lithium-ion batteries[J]. Electrochimica Acta, 2017, 247:600-609. [62] MICHAN A L, PARIMALAM B S, LESKES M, et al. Fluoroethylene carbonate and vinylene carbonate reduction:Understanding lithium-ion battery electrolyte additives and solid electrolyte interphase formation[J]. Chemistry of Materials, 2016, 28(22):8149-8159. [63] LAGGESSE E G, WEI T, NACHIMUTHU S, et al. Theoretical study of the reductive decomposition of vinylethylene sulfite as an additive in lithium ion battery[J]. Journal of the Chinese Chemical Society, 2016, 63(6):480-487. [64] LI B, XU M, LI T, et al. Prop-1-ene-1,3-sultone as SEI formation additive in propylene carbonate-based electrolyte for lithium ion batteries[J]. Electrochemistry Communications, 2012, 17(Supplement C):92-95. [65] LI B, XU M, LI B, et al. Properties of solid electrolyte interphase formed by prop-1-ene-1,3-sultone on graphite anode of Li-ion batteries[J]. Electrochimica Acta, 2013, 105(Supplement C):1-6. [66] XU K. Electrolytes and interphasial chemistry in Li ion devices[J]. Energies, 2010, 3(1):135-154. [67] MARTINEZ DE LA HOZ J M, BALBUENA P B. Reduction mechanisms of additives on Si anodes of Li-ion batteries[J]. Phys. Chem. Chem. Phys., 2014, 16(32):17091-17098. [68] PROFATILOVA I A, STOCK C, SCHMITZ A, et al. Enhanced thermal stability of a lithiated nano-silicon electrode by fluoroethylene carbonate and vinylene carbonate[J]. Journal of Power Sources, 2013, 222(Supplement C):140-149. [69] SOTO F A, MA Y, MARTINEZ DE LA HOZ J M, et al. Formation and growth mechanisms of solid-electrolyte interphase layers in rechargeable batteries[J]. Chemistry of Materials, 2015, 27(23):7990-8000. [70] SCHRODER K, ALVARADO J, YERSAK T A, et al. The effect of fluoroethylene carbonate as an additive on the solid electrolyte interphase on silicon lithium-ion electrodes[J]. Chemistry of Materials, 2015, 27(16):5531-5542. [71] HUNT P A, KIRCHNER B, WELTON T. Characterising the electronic structure of ionic liquids:An examination of the 1-butyl-3-methylimidazolium chloride ion pair[J]. Chem. Eur. J., 2006, 12:6762-6775. [72] TANG W J, PENG W J, YAN G C, et al. Effect of fluoroethylene carbonate as an electrolyte additive on the cycle performance of silicon-carbon composite anode in lithium-ion battery[J]. Ionics, 2017, 23(12):3281-3288. [73] HERBERT E G, TENHAEFF W E, DUDNEY N J, et al. Mechanical characterization of LiPON films using nanoindentation[J]. Thin Solid Films, 2011, 520(1):413-418. [74] XU C, LINDGREN F, PHILIPPE B, et al. Improved performance of the silicon anode for Li-ion batteries:Understanding the surface modification mechanism of fluoroethylene carbonate as an effective electrolyte additive[J]. Chemistry of Materials, 2015, 27(7):2591-2599. [75] CAMMARATA L, KAZARIAN S G, SALTERB P A, et al. Molecular states of water in room temperature ionic liquids[J]. Phys. Chem. Chem. Phys., 2001, 3:5192-5200. [76] MADEC L, PETIBON R, TASAKI K, et al. Mechanism of action of ethylene sulfite and vinylene carbonate electrolyte additives in LiNi1/3Mn1/3Co1/3O2/graphite pouch cells:electrochemical, GC-MS and XPS analysis[J]. Phys. Chem. Chem. Phys., 2015, 17(40):27062-27076. [77] ZHANG B, METZGER M, SOLCHENBACH S, et al. Role of 1,3-propane sultone and vinylene carbonate in solid electrolyte interface formation and gas generation[J]. The Journal of Physical Chemistry C, 2015, 119(21):11337-11348. [78] SHENG S Z. A review on electrolyte additives for lithium-ion batteries[J]. Journal of Power Sources, 2006, 162(2):1379-1394. [79] XIANG H F, XU H Y, WANG Z Z, et al. Dimethyl methylphosphonate (DMMP) as an efficient flame retardant additive for the lithium-ion battery electrolytes[J]. Journal of Power Sources, 2007, 173(1):562-564. [80] HYUNG Y E, VISSER D R, AMIE K. Flame-retardant additives for lithium-ion batteries[J]. Journal of Power Sources, 2003, 119:383-387. [81] KIM Y, JEONG D Y, HAN S C. First-principles investigation of the gas evolution from the cathodes of lithium-ion batteries during the storage test[J]. Journal of Material Science, 2014, 49:8444-8448. [82] XIAO L F, AI X P, CAO Y L, et al. Electrochemical behavior of biphenyl as polymerizable additive for overcharge protection of lithium ion batteries[J]. Electrochimica Acta, 2004, 49:4189-4196. [83] YOSHIDA H, FUKUNAGA T, HAZAMA T, et al. Degradation mechanism of alkyl carbonate solvents used in lithium-ion cells during initial charging[J]. Journal of Power Sources, 1997, 68:311-315. [84] ZHUANG G V, YANG H, BLIZANAC B, et al. A study of electrochemical reduction of ethylene and propylene carbonate electrolytes on graphite using ATR-FTIR spectroscopy[J]. Electrochemical and Solid-State Letters, 2005, 8(9):A441-A445. [85] TENG X, ZHAN C, BAI Y, et al. In-situ analysis of gas generation in lithium ion batteries with different carbonate-based electrolytes[J]. ACS Applied Materials Interfaces, 2015, 7(41):22751-22755. [86] XIA J, PETIBON R, XIAO A, et al. Some fluorinated carbonates as electrolyte additives for li(Ni0.4Mn0.4Co0.2)O2/graphite pouch cells[J]. Journal of the Electrochemical Society, 2016, 163(8):A1637-A1645. [87] XIA J, MADEC L, MA L, et al. Study of triallyl phosphate as an electrolyte additive for high voltage lithium-ion cells[J]. Journal of Power Sources, 2015, 295:203-211. |
[1] | 李海涛, 孔令丽, 张欣, 余传军, 王纪威, 徐琳. N/P设计对高镍NCM/Gr电芯性能的影响[J]. 储能科学与技术, 2022, 11(7): 2040-2045. |
[2] | 陈龙, 夏权, 任羿, 曹高萍, 邱景义, 张浩. 多物理场耦合下锂离子电池组可靠性研究现状与展望[J]. 储能科学与技术, 2022, 11(7): 2316-2323. |
[3] | 易顺民, 谢林柏, 彭力. 基于VF-DW-DFN的锂离子电池剩余寿命预测[J]. 储能科学与技术, 2022, 11(7): 2305-2315. |
[4] | 祝庆伟, 俞小莉, 吴启超, 徐一丹, 陈芬放, 黄瑞. 高能量密度锂离子电池老化半经验模型[J]. 储能科学与技术, 2022, 11(7): 2324-2331. |
[5] | 王宇作, 王瑨, 卢颖莉, 阮殿波. 孔结构对软碳负极储锂性能的影响[J]. 储能科学与技术, 2022, 11(7): 2023-2029. |
[6] | 刘显茜, 孙安梁, 田川. 基于仿生翅脉流道冷板的锂离子电池组液冷散热[J]. 储能科学与技术, 2022, 11(7): 2266-2273. |
[7] | 孔为, 金劲涛, 陆西坡, 孙洋. 对称蛇形流道锂离子电池冷却性能[J]. 储能科学与技术, 2022, 11(7): 2258-2265. |
[8] | 霍思达, 薛文东, 李新丽, 李勇. 基于CiteSpace知识图谱的锂电池复合电解质可视化分析[J]. 储能科学与技术, 2022, 11(7): 2103-2113. |
[9] | 邓健想, 赵金良, 黄成德. 高能量锂离子电池硅基负极黏结剂研究进展[J]. 储能科学与技术, 2022, 11(7): 2092-2102. |
[10] | 欧宇, 侯文会, 刘凯. 锂离子电池中的智能安全电解液研究进展[J]. 储能科学与技术, 2022, 11(6): 1772-1787. |
[11] | 韩俊伟, 肖菁, 陶莹, 孔德斌, 吕伟, 杨全红. 致密储能:基于石墨烯的方法学和应用实例[J]. 储能科学与技术, 2022, 11(6): 1865-1873. |
[12] | 辛耀达, 李娜, 杨乐, 宋维力, 孙磊, 陈浩森, 方岱宁. 锂离子电池植入传感技术[J]. 储能科学与技术, 2022, 11(6): 1834-1846. |
[13] | 燕乔一, 吴锋, 陈人杰, 李丽. 锂离子电池负极石墨回收处理及资源循环[J]. 储能科学与技术, 2022, 11(6): 1760-1771. |
[14] | 沈秀, 曾月劲, 李睿洋, 李佳霖, 李伟, 张鹏, 赵金保. γ射线辐照交联原位固态化阻燃锂离子电池[J]. 储能科学与技术, 2022, 11(6): 1816-1821. |
[15] | 丁奕, 杨艳, 陈锴, 曾涛, 黄云辉. 锂离子电池智能消防及其研究方法[J]. 储能科学与技术, 2022, 11(6): 1822-1833. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||