储能科学与技术 ›› 2018, Vol. 7 ›› Issue (3): 512-518.doi: 10.12028/j.issn.2095-4239.2018.0025

• 研究及进展 • 上一篇    下一篇

Fe3O4/纳米纤维素气凝胶负极材料的制备及电化学性能

李晨, 熊传溪   

  1. 武汉理工大学材料科学与工程学院, 湖北 武汉 430070
  • 收稿日期:2018-03-01 修回日期:2018-03-13 出版日期:2018-05-01 发布日期:2018-05-01
  • 通讯作者: 熊传溪,教授,研究方向为储能材料,E-mail:cxiong@whut.edu.cn
  • 作者简介:李晨(1994-),女,硕士研究生,研究方向为锂离子电池负极材料,E-mail:15972104586@163.com
  • 基金资助:
    国家自然科学基金项目(51673154,51503159)。

The preparation of Fe3O4/nanocellulose aerogel nanocomposite as anodes for lithium-ion batteries and electrochemical performance

LI Chen, XIONG Chuanxi   

  1. School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, Hubei, China
  • Received:2018-03-01 Revised:2018-03-13 Online:2018-05-01 Published:2018-05-01

摘要: 纤维素因其环境友好、价格低廉等优点受到研究者的广泛关注,近年来作为碳材料广泛应用于电化学研究中。采用碳化后的纳米纤维素气凝胶为载体,六水合氯化铁为铁源,通过溶液热法合成了四氧化三铁/纳米纤维素气凝胶复合材料。通过XRD和SEM对产物进行了结构表征和微观形貌分析,并将其作为锂离子电池的负极材料,测试了一系列电化学性能,并与纯Fe3O4纳米颗粒的进行对比。结果表明,碳化后的纳米纤维素气凝胶保持着疏松多孔的三维网络结构,尺寸均一的Fe3O4纳米粒子均匀的分布于其中。该复合材料表现出优异的循环稳定性,在100 mA/g的电流密度下,首次放电比容量为1064 mA·h/g,100次循环后仍稳定在847 mA·h/g。相比于纯Fe3O4纳米颗粒,材料的电化学性能得到大幅度提高。本文有助于推动纤维素基碳材料在电化学领域中的进一步应用,为复合电极材料的发展提供一定的实验依据。

关键词: 纤维素, 气凝胶, 四氧化三铁, 锂离子电池, 负极材料

Abstract: Cellulose has attracted much attention due to their eco-friendly property and low cost. Recently, it could be widely used in fields of electrochemical research as an efficient carbon material. Fe3O4/C-CNFA nanocomposite was prepared by a solvothermal method while ferric trichloride hexahydrate as the iron source and carbonized cellulose nanofiber aerogel as the carrier. X-ray diffraction and scanning electron microscopy were employed to characterize the structure and micro-morphology of the as-prepared nanomaterial. Meanwhile, electrochemical properties were also measured to compared with pure Fe3O4 nanoparticles. The results show that carbonized cellulose nanofiber aerogel maintains the 3D porous network and Fe3O4 nanoparticles with uniform size are uniformly distributed in the carbon matrix. Fe3O4/C-CNFA nanocomposite demonstrates an excellent cycling stability with a reversible capacity of 847 mA·h·g-1 over 100 cycles at a current density of 100 mA·g-1, as well as an initial specific discharge capacity of 1064 mA·h·g-1. Compared to pure Fe3O4 nanoparticles, the electrochemical properties of the synthesized nanomaterials have been greatly improved. This study is beneficial for promoting the application of cellulose based carbon material in electrochemical field. Furthermore, it also provides experimental basis for the development of composite electrode material.

Key words: cellulose, aerogel, Fe3O4, lithium-ion battery, anode material

中图分类号: