[1] PARK O K, CHO Y, LEE S, et al. Who will drive electric vehicles, olivine or spinel?[J]. Energy & Environmental Science, 2011, 4(5):1621-1633.
[2] GUO Y, LI H, ZHAI T. Reviving lithium-metal anodes for next-generation high-energy batteries[J]. Advanced Materials, 2017, 29(29):doi:org/10.1002/adma.201700007.
[3] AMINE K, BELHAROUAK I, CHEN Z, et al. Organic nonvolatile memory:Nanostructured anode material for high-power battery system in electric vehicles[J]. Advanced Materials, 2010, 22(28):3052-3057.
[4] GUO B, WANG X, FULVIO P F, et al. Soft-templated mesoporous carbon-carbon nanotube composites for high performance lithium-ion batteries[J]. Advanced Materials, 2011, 23(40):4661-4666.
[5] SHEN L, UCHAKER E, YUAN C, et al. Three-dimensional coherent titania-mesoporous carbon nanocomposite and its lithium-ion storage properties[J]. ACS Appl. Mater. Interfaces, 2012, 4(6):2985.
[6] POIZOT P, LARUELLE S, GRUGEON S, et al. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries[J]. Nature, 2000, 407(6803):496.
[7] WANG P, GAO M, PAN H, et al. A facile synthesis of Fe3O4/C composite with high cycle stability as anode material for lithium-ion batteries[J]. Journal of Power Sources, 2013, 239(239):466-474.
[8] ZHAO Y, LI X, YAN B, et al. Recent developments and understanding of novel mixed transition-metal oxides as anodes in lithium ion batteries[J]. Advanced Energy Materials, 2016, 6(8):doi:10.1002/aenm.201502175.
[9] SU L, ZHONG Y, ZHOU Z. Role of transition metal nanoparticles in the extra lithium storage capacity of transition metal oxides:a case study of hierarchical core-shell Fe3O4@C and Fe@C microspheres[J]. Journal of Materials Chemistry A, 2013, 1(47):15158-15166.
[10] LEE S H, YU S H, JI E L, et al. Self-assembled Fe3O4 nanoparticle clusters as high-performance anodes for lithium ion batteries via geometric confinement[J]. Nano Letters, 2013, 13(9):4249.
[11] 麻亚挺, 黄健, 刘翔, 等. 微纳米空心结构金属氧化物作为锂离子电池负极材料的研究进展[J]. 储能科学与技术, 2017, 6(5):871-888. MA Yating, HUANG Jian, LIU Xiang, et al. Hollow micro/nanostructures metal oxide as advanced anodes for lithium-ion batteries[J]. Energy Storage Science and Technology, 2017, 6(5):871-888.
[12] LIM H S, JUNG B Y, SUN Y K, et al. Hollow Fe3O4, microspheres as anode materials for lithium-ion batteries[J]. Electrochimica Acta, 2012, 75(4):123-130.
[13] WU H, DU N, WANG J, et al. Three-dimensionally porous Fe3O4, as high-performance anode materials for lithium-ion batteries[J]. Journal of Power Sources, 2014, 246(3):198-203.
[14] ZHANG N, CHEN C, YAN X, et al. Bacteria-inspired fabrication of Fe3O4-carbon/graphene foam for lithium-ion battery anodes[J]. Electrochimica Acta, 2017, 223:39-46.
[15] LUO J, LIU J, ZENG Z, et al. Three-dimensional graphene foam supported Fe3O4 lithium battery anodes with long cycle life and high rate capability[J]. Nano Letters, 2013, 13(12):6136-6143.
[16] AURBACH D, LEVI M D, LEVI E, et al. Common electroanalytical behavior of Li intercalation processes into graphite and transition metal oxides[J]. Journal of the Electrochemical Society, 1998, 145(9):3024-3034.
[17] SHI Y, ZHANG J, BRUCK A M, et al. A tunable 3D nanostructured conductive gel framework electrode for high-performance lithium ion batteries[J]. Advanced Materials, 2017, 29(22):doi:10.1002/adma. 201603922. |