[1] ANGELL C A, LIU C, SANCHEZ E. Rubbery solid electrolytes with dominant cationic transport and high ambient conductivity[J]. Nature, 1993, 362 (6416):137-139.
[2] ARMAND M, TARASCON J M. Building better batteries[J]. Nature, 2008, 451 (7179):652-657.
[3] BOGLE X, VAZQUEZ R, GREENBAUM S, et al. Understanding Li+-solvent interaction in nonaqueous carbonate electrolytes with O-17 NMR[J]. Journal of Physical Chemistry Letters, 2013, 4 (10):1664-1668.
[4] BURNS J C, JAIN G, SMITH A J, et al. Evaluation of effects of additives in wound Li-ion cells through high precision coulometry[J]. Journal of the Electrochemical Society, 2011, 158 (3):A255-A261.
[5] DUNN B, KAMATH H, TARASCON J M. Electrical energy storage for the grid:A battery of choices[J]. Science, 2011, 334 (6058):928-935.
[6] GOODENOUGH J B, KIM Y. Challenges for rechargeable Li batteries[J]. Chemistry of Materials, 2010, 22 (3):587-603.
[7] LI W, DAHN J R, WAINWRIGHT D S. Rechargeable lithium batteries with aqueous-electrolytes[J]. Science, 1994, 264 (5162):1115-1118.
[8] WANG G X, ZHONG S, BRADHURST D H, et al. Secondary aqueous lithium-ion batteries with spinel anodes and cathodes[J]. Journal of Power Sources, 1998, 74 (2):198-201.
[9] KOHLER J, MAKIHARA H, UEGAITO H, et al. LiV3O8:Characterization as anode material for an aqueous rechargeable Li-ion battery system[J]. Electrochimica Acta, 2000, 46 (1):59-65.
[10] WANG H B, HUANG K L, ZENG Y Q, et al. Electrochemical properties of TiP2O7 and LiTi2 (PO4)3 as anode material for lithium ion battery with aqueous solution electrolyte[J]. Electrochimica Acta, 2007, 52 (9):3280-3285.
[11] WANG H B, ZENG Y Q, HUANG K L, et al. Improvement of cycle performance of lithium ion cell LiMn2O4/LixV2O5 with aqueous solution electrolyte by polypyrrole coating on anode[J]. Electrochimica Acta, 2007, 52 (15):5102-5107.
[12] YAN J, WANG J, LIU H, et al. Rechargeable hybrid aqueous batteries[J]. Journal of Power Sources, 2012, 216:222-226.
[13] LUO J Y, CUI W J, HE P, et al. Raising the cycling stability of aqueous lithium-ion batteries by eliminating oxygen in the electrolyte[J]. Nature Chemistry, 2010, 2 (9):760-765.
[14] TANG W, LIU L L, ZHU Y S, et al. An aqueous rechargeable lithium battery of excellent rate capability based on a nanocomposite of MoO3 coated with PPy and LiMn2O4[J]. Energy & Environmental Science, 2012, 5 (5):6909-6913.
[15] NAOI K, MORI M, NARUOKA Y, et al. The surface film formed on a lithium metal electrode in a new imide electrolyte, lithium bis (perfluoroethylsulfonylimide) LiN (C2F5SO2)2[J]. Journal of the Electrochemical Society, 1999, 146 (2):462-469.
[16] 刘亚利, 吴娇杨, 李泓. 锂离子电池基础科学问题 (Ⅸ)——非水液体电解质材料[J]. 储能科学与技术, 2014, 3 (3):262-282.
[17] LUX S F, TERBORG L, HACHMOLLER O, et al. LiTFSI stability in water and its possible use in aqueous lithium-ion batteries:pH dependency, electrochemical window and temperature stability[J]. Journal of the Electrochemical Society, 2013, 160 (10):A1694-A1700.
[18] SUO L M, BORODIN O, GAO T, et al. "Water-in-salt" electrolyte enables high-voltage aqueous lithium-ion chemistries[J]. Science, 2015, 350 (6263):938-943.
[19] MCOWEN D W, SEO D M, BORODIN O, et al. Concentrated electrolytes:Decrypting electrolyte properties and reassessing Al corrosion mechanisms[J]. Energy & Environmental Science, 2014, 7 (1):416-426.
[20] KIM H, HONG J, PARK K Y, et al. Aqueous rechargeable Li and Na ion batteries[J]. Chemical Reviews, 2014, 114 (23):11788-11827.
[21] SUO L M, BORODIN O, SUN W, et al. Advanced high-voltage aqueous lithium-ion battery enabled by "water-in-bisalt" electrolyte[J]. Angewandte Chemie-International Edition, 2016, 55 (25):7136-7141.
[22] FUJISHIMA A, ZHANG X T, TRYK D A. TiO2 photocatalysis and related surface phenomena[J]. Surface Science Reports, 2008, 63 (12):515-582.
[23] KHAN S U M, AL-SHAHRY M, INGLER W B. Efficient photochemical water splitting by a chemically modified n-TiO2[J]. Science, 2002, 297 (5590):2243-2245.
[24] NI M, LEUNG M K H, LEUNG D Y C, et al. A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production[J]. Renewable & Sustainable Energy Reviews, 2007, 11 (3):401-425.
[25] ROSSMEISL J, QU Z W, ZHU H, et al. Electrolysis of water on oxide surfaces[J]. Journal of Electroanalytical Chemistry, 2007, 607 (1/2):83-89.
[26] KIM H J, JACKSON D H K, LEE J, et al. Enhanced activity and stability of TiO2-coated cobalt/carbon catalysts for electrochemical water oxidation[J]. ACS Catalysis, 2015, 5 (6):3463-3469.
[27] MORALES-GUIO C G, STERN L A, HU X L. Nanostructured hydrotreating catalysts for electrochemical hydrogen evolution[J]. Chemical Society Reviews, 2014, 43 (18):6555-6569.
[28] SUO L M, HAN F D, FAN X L, et al. "Water-in-salt" electrolytes enable green and safe Li-ion batteries for large scale electric energy storage applications[J]. Journal of Materials Chemistry A, 2016, 4 (17):6639-6644.
[29] THACKERAY M M, SHAO-HORN Y, KAHAIAN A J, et al. Structural fatigue in spinel electrodes in high voltage (4V) Li/LixMn2O4 cells[J]. Electrochemical and Solid State Letters, 1998, 1 (1):7-9.
[30] XIA Y Y, ZHOU Y H, YOSHIO M. Capacity fading on cycling of 4 V Li/LiMn2O4 cells[J]. Journal of the Electrochemical Society, 1997, 144 (8):2593-2600.
[31] CHOI D W, WANG D H, VISWANATHAN V V, et al. Li-ion batteries from LiFePO4 cathode and anatase/graphene composite anode for stationary energy storage[J]. Electrochemistry Communications, 2010, 12 (3):378-381.
[32] WU X L, JIANG L Y, CAO F F, et al. LiFePO4 nanoparticles embedded in a nanoporous carbon matrix:Superior cathode material for electrochemical energy-storage devices[J]. Advanced Materials, 2009, 21 (25/26):2710.
[33] MI C H, ZHANG X G, LI H L. Electrochemical behaviors of solid LiFePO4 and Li0.99Nb0.01FePO4 in Li2SO4 aqueous electrolyte[J]. Journal of Electroanalytical Chemistry, 2007, 602 (2):245-254.
[34] HOU Y Y, WANG X J, ZHU Y S, et al. Macroporous LiFePO4 as a cathode for an aqueous rechargeable lithium battery of high energy density[J]. Journal of Materials Chemistry A, 2013, 1 (46):14713-14718.
[35] HE P, ZHANG X, WANG Y G, et al. Lithium-ion intercalation behavior of LiFePO4 in aqueous and nonaqueous electrolyte solutions[J]. Journal of the Electrochemical Society, 2008, 155 (2):A144-A150.
[36] WANG F, LIN Y X, SUO L M, et al. Stabilizing high voltage LiCoO2 cathode in aqueous electrolyte with interphase-forming additive[J]. Energy & Environmental Science, 2016, 9 (12):3666-3673.
[37] MANICKAM M, SINGH P, THURGATE S, et al. Redox behavior and surface characterization of LiFePO4 in lithium hydroxide electrolyte[J]. Journal of Power Sources, 2006, 158 (1):646-649.
[38] HE P, LIU J L, CUI W J, et al. Investigation on capacity fading of LiFePO4 in aqueous electrolyte[J]. Electrochimica Acta, 2011, 56 (5):2351-2357.
[39] CHEN Z H, DAHN J R. Methods to obtain excellent capacity retention in LiCoO2 cycled to 4.5 V[J]. Electrochimica Acta, 2004, 49 (7):1079-1090.
[40] RUFFO R, LA MANTIA F, WESSELLS C, et al. Electrochemical characterization of LiCoO2 as rechargeable electrode in aqueous LiNO3 electrolyte[J]. Solid State Ionics, 2011, 192 (1):289-292.
[41] WANG G J, QU Q T, WANG B, et al. Electrochemical behavior of LiCoO2 in a saturated aqueous Li2SO4 solution[J]. Electrochimica Acta, 2009, 54 (4):1199-1203.
[42] RUFFO R, WESSELLS C, HUGGINS R A, et al. Electrochemical behavior of LiCoO2as aqueous lithium-ion battery electrodes[J]. Electrochemistry Communications, 2009, 11 (2):247-249.
[43] RAMANUJAPURAM A, GORDON D, MAGASINSKI A, et al. Degradation and stabilization of lithium cobalt oxide in aqueous electrolytes[J]. Energy & Environmental Science, 2016, 9 (5):1841-1848.
[44] SUN Y K, HAN J M, MYUNG S T, et al. Significant improvement of high voltage cycling behavior AlF3-coated LiCoO2 cathode[J]. Electrochemistry Communications, 2006, 8 (5):821-826.
[45] LEE J N, HAN G B, RYOU M H, et al. N-(triphenylphosp-horanylidene) aniline as a novel electrolyte additive for high voltage LiCoO2 operations in lithium ion batteries[J]. Electrochimica Acta, 2011, 56 (14):5195-5200.
[46] ZHAO F, TANG Y F, WANG J S, et al. Vapor-assisted synthesis of Al2O3-coated LiCoO2 for high-voltage lithium ion batteries[J]. Electrochimica Acta, 2015, 174:384-390.
[47] DAI X Y, ZHOU A J, XU J, et al. Extending the high-voltage capacity of LiCoO2 cathode by direct coating of the composite electrode with Li2CO3 via magnetron sputtering[J]. Journal of Physical Chemistry C, 2016, 120 (1):422-430.
[48] XIA H, LU L, MENG Y S, et al. Phase transitions and high-voltage electrochemical behavior of LiCoO2 thin films grown by pulsed laser deposition[J]. Journal of the Electrochemical Society, 2007, 154 (4):A337-A342.
[49] AURBACH D, MARKOVSKY B, RODKIN A, et al. On the capacity fading of LiCoO2 intercalation electrodes:The effect of cycling, storage, temperature, and surface film forming additives[J]. Electrochimica Acta, 2002, 47 (27):4291-4306.
[50] WANG X F, LU X H, LIU B, et al. Flexible energy-storage devices:Design consideration and recent progress[J]. Advanced Materials, 2014, 26 (28):4763-4782.
[51] LI L, WU Z, YUAN S, et al. Advances and challenges for flexible energy storage and conversion devices and systems[J]. Energy & Environmental Science, 2014, 7 (7):2101-2122.
[52] TARASCON J M, ARMAND M. Issues and challenges facing rechargeable lithium batteries[J]. Nature, 2001, 414 (6861):359-367.
[53] CHOI N S, CHEN Z H, FREUNBERGER S A, et al. Challenges facing lithium batteries and electrical double-layer capacitors[J]. Angewandte Chemie-International Edition, 2012, 51 (40):9994-10024.
[54] YANG C Y, JI X, FAN X L, et al. Flexible aqueous Li-ion battery with high energy and power densities[J]. Advanced Materials, 2017, 29 (44):doi:10.1002/adma.201701972.
[55] JI X L, LEE K T, NAZAR L F. A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries[J]. Nature Materials, 2009, 8 (6):500-506.
[56] SEH Z W, YU J H, LI W Y, et al. Two-dimensional layered transition metal disulphides for effective encapsulation of high-capacity lithium sulphide cathodes[J]. Nature Communications, 2014, 5:5017.
[57] SU Y S, FU Y Z, COCHELL T, et al. A strategic approach to recharging lithium-sulphur batteries for long cycle life[J]. Nature Communications, 2013, 4:doi:10.1038/ncomms3985.
[58] WEI SEH Z, LI W, CHA J J, et al. Sulphur-TiO2 yolk-shell nanoarchitecture with internal void space for long-cycle lithium-sulphur batteries[J]. Nature Communications, 2013, 4:1331.
[59] ZHANG S, UENO K, DOKKO K, et al. Recent advances in electrolytes for lithium-sulfur batteries[J]. Advanced Energy Materials, 2015, 5 (16):28.
[60] YANG C Y, SUO L M, BORODIN O, et al. Unique aqueous Li-ion/sulfur chemistry with high energy density and reversibility[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114 (24):6197-6202.
[61] ZHAO J W, LI Y Q, PENG X, et al. High-voltage Zn/LiMn0.8Fe0.2PO4 aqueous rechargeable battery by virtue of "water-in-salt" electrolyte[J]. Electrochemistry Communications, 2016, 69:6-10.
[62] WANG F, BORODIN O, GAO T, et al. Highly reversible zinc metal anode for aqueous batteries[J]. Nature Materials, 2018, 17 (6):543.
[63] KRAMER E, SCHEDLBAUER T, HOFFMANN B, et al. Mechanism of anodic dissolution of the aluminum current collector in 1 M LiTFSI EC:DEC 3:7 in rechargeable lithium batteries[J]. Journal of the Electrochemical Society, 2013, 160 (2):A356-A360.
[64] VON CRESCE A, RUSSELL S M, BAKER D R, et al. In situ and quantitative characterization of solid electrolyte interphases[J]. Nano Letters, 2014, 14 (3):1405-1412.
[65] SUO L M, OH D, LIN Y X, et al. How solid-electrolyte interphase forms in aqueous electrolytes[J]. Journal of the American Chemical Society, 2017, 139 (51):18670-18680.
[66] BORODIN O, SUO L M, GOBET M, et al. Liquid structure with nano-heterogeneity promotes cationic transport in concentrated electrolytes[J]. ACS Nano, 2017, 11 (10):10462-10471.
[67] YAMADA Y, USUI K, SODEYAMA K, et al. Hydrate-melt electrolytes for high-energy-density aqueous batteries[J]. Nature Energy, 2016, 1:9. |