[1] 王慧富, 吴玉庭, 张晓明, 等. 槽式太阳能热发电站的模拟优化[J]. 太阳能学报, 2018, 39(7):1788-1796. WANG Huifu, WU Yuting, ZHANG Xiaoming, et al. Simulationand optimization of parabolic trough solar power plants[J]. Acta Energiae Solaris Sinica, 2018, 39(7):1788-1796.
[2] 王鹏, 罗尘丁, 巨星. 光热电站熔盐传热储热技术应用[J]. 电力勘测设计, 2017(2):67-71. WANG Peng, LUO Chending, JU Xing. Application of molten salts for heat transfer and storage technique for molten salts in concentrating solar power plant[J]. Electric Power Survey & Design, 2017(2):67-71.
[3] FERNANDEZ A G, USHAK S, GALLEGUILLOS H, et al. Development of new molten salts with LiNO3 and Ca(NO3)2 for energy storage in CSP plants[J]. Applied Energy, 2014, 119:131-140.
[4] 魏小兰, 尹月, 丁静, 等. 镁基三元氯化物熔盐储热过程性能变化机理分析[J]. 太阳能学报, 2018, 39(1):37-43. WEI Xiaolan, YIN Yue, DING Jing, et al. Mechanismanalysis of performance change of ternary chloride molten salt storage process[J]. Acta Energiae Solaris Sinica, 2018, 39(1):37-43.
[5] 程晓敏, 徐凯, 朱闯, 等. 高温处理对LiNO3-NaNO3-KNO3熔盐固相线温度的影响[J]. 储能科学与技术, 2017, 6(5):1094-1098. CHENG Xiaomin, XU Kai, ZHU Chuang, et al. Influence of heat treatment on solidus temperature of LiNO3-NaNO3-KNO3 molten salt[J]. Energy Storage Science and Technology, 2017, 6(5):1094-1098.
[6] 朱教群, 陈维, 周卫兵, 等. 三元硫酸熔盐的制备及其热稳定性能[J]. 储能科学与技术, 2016, 5(4):498-502. ZHU Jiaoqun, CHEN Wei, ZHOU Weibing, et al. Preparation and thermal stability of a ternary sulfate molten salt[J]. Energy Storage Science and Technology, 2016, 5(4):498-502.
[7] 李彦, 余杨敏, 李鹏, 等. LiNO3-KNO3二元混合硝酸盐热稳定性分析[J]. 上海电力学院学报, 2018, 34(1):37-40. LI Yan, YU Yangmin, LI Peng, et al. Thermal stability analysis of LiNO3 binary mixed nitrates[J]. Journal of Shanghai University of Electric Power, 2018, 34(1):37-40.
[8] 彭强, 杨晓西, 丁静, 等. 三元硝酸熔盐高温热稳定性实验研究与机理分析[J]. 化工学报, 2013(5):1507-1512. PENG Qiang, YANG Xiaoxi, DING Jing, et al. Experimental study and mechanism analysis for high-temperature thermal stability of ternary nitrate salt[J]. Journal of Chemical Industry and Engineering(China), 2013(5):1507-1512.
[9] 聂挺, 单艳, 胡川, 等. 量子化学计算对4种抗氧化肽清除自由基活性机理判别分析[J]. 南昌大学学报(理科版), 2015, 39(1):70-75. NIE Ting, SHAN Yan, HU Chuang, et al. Study on the activity mechanism of free redical scavenging of antioxidant peptides by quantum chemical calculation[J]. Journal of Nanchang Universiy(Natural Science), 2015, 39(1):70-75.
[10] 黄晶晶, 齐永锋, 王妹婷, 等. 不同气氛下煤焦吸附NO的量子化学计算[J]. 化学通报, 2015, 78(7):655-658. HUANG Jingjing, QI Yongfeng, WANG Meiting, et al. Quantum chemistry calculation of nitric oxide adsorption on char under different atmospheres[J]. Chemistry Bulletin, 2015, 78(7):655-658.
[11] 王瑜, 刘建, 曾勇, 等. 量子化学计算在硫化铅锌矿浮选机理中的研究进展[J]. 矿产保护与利用, 2018(3):37-42+48. WANG Yu, LIU Jian, ZENG Yong, et al. Quantum chemistry calculation in lead-zinc sulfide ore flotation:A review[J]. Conservation and Utilization of Mineral Resources, 2018(3):37-42+48.
[12] IVERSON B D, BROOME S T, KRUIZENG A M, et al. Thermal and mechanical properties of nitrate thermal storage salts in the solid-phase[J]. Solar Energy, 2012, 86(10):2897-2911.
[13] NISSEN D A, MEEKER D E. Nitrate/nitrite chemistry in sodium nitrate-potassium nitrate melts[J]. Inorganic Chemistry, 1983, 22(5):716-721.
[14] NANAYAKKARA C E, JAYAWEERA P M, RUBASINGHEGE G, et al. Surface photochemistry of adsorbed nitrate:The role of adsorbed water in the formation of reduced nitrogen species on alpha-Fe2O3 particle surfaces[J]. Journal of Physical Chemistry A, 2014, 118(1):158-166.
[15] AL-REFAIE A A, WALTON J, COTTIS R A, et al. Photoelectron spectroscopy study of the inhibition of mild steel corrosion by molybdate and nitrite anions[J]. Corrosion Science, 2010, 52(2):422-428.
[16] NESBITT H W, BANCROFT G M, HENDERSON G S, et al. Bridging, non-bridging and free (O2-) oxygen in Na2O-SiO2 glasses:An X-ray photoelectron spectroscopic (XPS) and nuclear magnetic resonance (NMR) study[J]. Journal of Non-Crystalline Solids, 2011, 357(1):170-180.
[17] HYUNJIN Kim, DONG Young Kim, YONGSU Kim, et al. Na insertion mechanisms in vanadium oxide nanotubes for na-ion batteries[J]. ACS Applied Materials and Interfaces, 2015, 7(6):1477-1485.
[18] LEE Jaeryeong, KIM Youngjin. Chemical dissolution of iridium powder using alkali fusion followed by high-temperature leaching[J]. Materials Transactions, 2011, 52(11):2067-2070.
[19] OLIVARES R I. The thermal stability of molten nitrite/nitrates salt for solar thermal energy storage in different atmospheres[J]. Solar Energy, 2012, 86(9):2576-2583.
[20] STERN K H. High temperature properties and thermal decomposition of inorganic salts with oxyanions[M]. Boca Raton:CRC Press, 2001.
[21] WU Q H, THISSEN A, JAEGERMANN W. XPS and UPS study of Na deposition on thin film V2O5[J]. Applied Surface Science, 2005, 252(5):1801-1805.
[22] FLORI M, GRUZZA B, BIDEUX L, et al. A study of the 42CrMo4 steel surface by quantitative XPS electron spectroscopy[J]. Applied Surface Science, 2008, 254(15):4738-4743.
[23] CHAUVAUT V, ALBIN V, SCHNEIDER H, et al. Study of cerium species in molten Li2CO3-Na2CO3 in the conditions used in molten carbonate fuel cells. Part I:Thermodynamic, chemical and surface properties[J]. Journal of Applied Electrochemistry, 2000, 30(12):1405-1413. |