[1] 罗倩, 巢亚军, 渠冰, 等. 锂离子电池中SEI膜的研究方法[J]. 电源技术, 2015, 39(5):1086-1090. LUO Q, CHAO Y J, QU B, et al. Research technologies of solid electrolyte interphase in Li-ion batteries[J]. Chinese Journal of Power Sources, 2015, 39(5):1086-1090.
[2] BINNIG G, ROHRER H. Scaning tunneling microscope[J]. Helvetica, 1982, 55(4):726-729.
[3] BINNIG G, ROHRER H, GERBER C, et al. Surface studies by scanning tunneling microscope[J]. Phys. Rev. Lett., 1982, 49(1):57-61.
[4] BINNIG G, ROHRER H, GERBER C, et al. 7×7 Reconstruction on Si(111) resolved in real space[J]. Phys. Rev. Lett., 1983, 50(2):120-123.
[5] 白春礼. 扫描隧道显微术及其应用[M]. 上海:上海科学技术出版社, 1994. BAI C L. Scanning tunneling microscopy and its application[M]. Shanghai:Shanghai Scientific & Technical Publishers, 1994.
[6] BINNIG G, QUATE C F, GERBER C, et al. Atomic force microscope[J]. Phys. Rev. Lett., 1986, 56(9):930-933.
[7] 于凉云, 张奇, 袁淑军. 原子力显微镜(AFM)应用于纳米科学中的研究进展[J]. 山东化工, 2016, 45(24):39-43. YU L Y, ZHANG Q, YUAN S J. A review of atomic force microscopy applied in nanoscience[J]. Shandong Chemical Industry, 2016, 45(24):39-43.
[8] 刘波, 马立, 谢炜, 等. 原子力显微镜技术在细胞研究中的进展[J]. 微纳电子技术, 2013, 50(4):248-254. LIU B, MA L, XIE W, et al. Progress of AFM technology in the study of cells[J]. Micronanoelectronic Technology, 2013, 50(4):248-254.
[9] 马梦佳, 陈玉云, 闫志强, 等. 原子力显微镜在纳米生物材料研究中的应用[J]. 化学进展, 2013, 25(1):135-144. MA M J, CHEN Y Y, YAN Z Q, et al. Applications of atomic force microscopy in nanobiomaterials research[J]. Progress in Chemistry, 2013, 25(1):135-144.
[10] 葛小鹏, 汤鸿霄, 王东升, 等. 原子力显微镜在环境样品研究与表征中的应用与展望[J]. 环境科学学报, 2005, 25(1):5-16. GE X P, TANG H X, WANG D S, et al. Atomic force microscopy and its application in the characterization of environmental samples[J]. Acta Scientiae Circumstantiae, 2005, 25(1):5-17
[11] ALESSANDRINI A, FACCI P. AFM:A versatile tool in biophysics[J]. Meas. Sci. Technol., 2005, 16(6):65-92.
[12] HUANG L, SU C M. A tosional resonance mode AFM for in-plane tip surface interactions[J]. Ultramicroscopy, 2004, 100(3):277-285.
[13] KASAI T, BHUSHAN B, HUANG L, et al. Topography and phase imaging using the torsional resonance mode[J]. Nanotechnology, 2004, 15(7):doi:10.1088/0957-4484/1517/004.
[14] LIU G F, LIU J, SUN H, et al. In situ imaging of on-surface solvent-free molecular single-crystal growth[J]. J. Am. Chem. Soc., 2015, 137(15):4972-4975.
[15] LUO D, YANG F, WANG X, et al. Anisotropic etching of graphite flakes with water vapor to produce armchair-edged graphene[J]. Small, 2014, 14(10):2809-2814.
[16] LUCAS I T, POLLAK E, KOSTECKI R. In situ AFM studies of SEI formation at a Sn electrode[J]. Electrochem. Commun., 2009, 11(11):2157-2160.
[17] LIU X R, DENG X, LIU R R, et al. Single nanowire electrode electrochemistry of silicon anode by in situ atomic force microscopy:Solid electrolyte interphase growth and mechanical properties[J]. ACS Appl. Mater. Interfaces, 2014, 6(22):20317-20323.
[18] KUMAR R, TOKRANOV A, SHELDON B W, et al. In situ and operando investigations of failure mechanisms of the solid electrolyte interphase on silicon electrodes[J]. ACS Energy Lett., 2016, 1(4):689-697.
[19] STEINHAUER M, STICH M, KURNIAWAN M, et al. In situ studies of solid electrolyte interphase (SEI) formation on crystalline carbon surfaces by neutron reflectometry and atomic force microscopy[J]. ACS Appl. Mater. Interfaces, 2017, 9:35794-35801.
[20] LIU X R, WANG L, WAN L J, et al. In situ observation of electrolyte-concentration-dependent solid electrolyte interphase on graphite in dimethyl sulfoxide[J]. ACS Appl. Mater. Interfaces, 2015, 7(18):9573-9580.
[21] LIU X R, YAN H J, WANG D, et al. In situ AFM investigation of interfacial morphology of single crystal silicon wafer anode[J]. Acta Phys. -Chim. Sin, 2016, 32(1):283-289.
[22] XU W L, VEGUNTA S S, FLAKE J C, et al. Surface-modified silicon nanowire anodes for lithium-ion batteries[J]. J. Power Sources, 2011, 196(20):8583-8589.
[23] ZHANG J, WANG R, YANG X C, et al. Direct observation of inhomogeneous solid electrolyte interphase on MnO anode with atomic force microscopy and spectroscopy[J]. Nano Let., 2012, 12(4):2153-2157.
[24] SHIN H, PARK J, HAN S, et al, Component-/structure-dependent elasticity of solid electrolyte interphase layer in Li-ion batteries:Experimental and computational studies[J]. J. Power Sources, 2015, 277:169-179.
[25] ZHENG J Y, ZHENG H, WANG R, et al. 3D visualization of inhomogeneous multi-layered structure and Young's modulus of the solid electrolyte interphase (SEI) on silicon anodes for lithium ion batteries[J]. Phys. Chem. Chem. Phys., 2014(16):13229-13238.
[26] KITTA M, SANO H. Real-time observation of Li deposition on a Li electrode with operand atomic force microscopy and surface mechanical imaging[J]. Langmuir, 2017, 33(8):1861-1866.
[27] BECKER C R, PROKES S M, LOVE C T. Enhanced lithiation cycle stability of ALD-coated confined a Si microstructures determined using in situ AFM[J]. ACS Appl. Mater. Interfaces, 2016, 8(1):530-537.
[28] MOGI R, INABA M, JEONG S K, et al. Effects of some organic additives on lithium deposition in propylene carbonate[J]. J. Electrochem. Soc., 2002, 149(12):A1578-A1583.
[29] BECKER C R, STRAWHECKER K E, MCALLISTER Q P, et al. In situ atomic force microscopy of lithiation and delithiation of silicon nanostructures for lithium ion batteries[J]. ACS Nano, 2013, 7(10):9173-9182.
[30] BREITUNG B, BAUMANN P, SOMMER H, et al. In situ and operando atomic force microscopy of high-capacity nano-silicon based electrodes for lithium-ion batteries[J]. Nanoscale, 2016, 8(29):14048-14056.
[31] DOMI Y, OCHIDA M, TSUBOUCHI S, et al. In situ AFM study of surface film formation on the edge plane of HOPG for lithiumion batteries[J]. J. Phys. Chem. C, 2011(115):25484-25489.
[32] HUANG S Q, WANG S W, HU G H, et al. Modulation of solid electrolyte interphase of lithium-ion batteries by LiDFOB and LiBOB electrolyte additives[J]. App. Surf. Sci., 2018, 441(31):265-271.
[33] VERDE M G, BAGGETTO L, BALKE N, et al. Elucidating the phase transformation of Li4Ti5O12 lithiation at the nanoscale[J]. ACS Nano, 2016, 10(4):4312-4321.
[34] RAMDON S, BHUSHAN B. High resolution morphology and electrical characterization of aged Li-ion battery cathode[J]. J. Colloid Interface Sci., 2012, 380(1):187-191.
[35] DEMIROCAK D E, BHUSHAN B. In situ atomic force microscopy analysis of morphology and particle size changes in lithium iron phosphate cathode during discharge[J]. J. Colloid Interface Sci., 2014, 423(6):151-157.
[36] PARK J, KALNAUS S, HAN S, et al. In situ atomic force microscopy studies on lithium (de) intercalation-induced morphology changes in LixCoO2 micro-machined thin film electrodes[J]. J. Power Sources, 2013, 222:417-425.
[37] VIDU R, QUINLAN F T, STROEVE P. Use of in situ electrochemical atomic force microscopy (EC-AFM) to monitor cathode surface reaction in organic electrolyte[J]. Ind. Eng. Chem. Res., 2002, 41(25):6546-6554.
[38] LU W, ZHANG J S, XU J J, et al. In situ visualized cathode electrolyte interphase on LiCoO2 in high voltage cycling[J]. ACS Appl. Mater. Interfaces, 2017, 9(22):19313-19318.
[39] KANNAN A, RABENBERG L, MANTHIRAM A. High capacity surface-modified LiCoO2 cathodes for lithium-ion batteries[J]. Electrochem. Solid-State Lett., 2003, 6(1):A16-A18.
[40] KIM Y J, KIM H, KIM B, et al. Electrochemical stability of thin-film LiCoO2 cathodes by aluminum-oxide coating[J]. Chem. Mater., 2003, 15(7):1505-1511.
[41] YAO W T, LONG F, SHAHBAZIAN-YASSAR R. Localized mechanical stress induced ionic redistribution in a layered LiCoO2 cathode[J]. ACS Appl. Mater. Interfaces, 2016, 8(43):29391-29399.
[42] SHIM J H, LEE K S, MISSYUL A, et al. Characterization of spinel LixCo2O4-coated LiCoO2 prepared with post-thermal treatment as a cathode material for lithium ion batteries[J]. Chem. Mater., 2015, 27(9):3273-3279.
[43] LIANG J Y, ZENG X X, ZHANG X D, et al. Mitigating interfacial potential drop of cathode-solid electrolyte via ionic conductor layer to enhance interface dynamics for solid batteries[J]. J. Am. Chem. Soc., 2018, 140(22):6767-6770.
[44] NAGPURE S C, BHUSHAN B, BABU S, et al. Scanning spreading resistance characterization of aged Li-ion batteries using atomic force microscopy[J]. Scripta Mater., 2009, 60(11):933-936.
[45] MASCARO A, WANG Z, HOVINGTON P, et al. Measuring spatially resolved collective ionic transport on lithium battery cathodes using atomic force microscopy[J]. Nano Lett., 2017, 17(7):4489-4496.
[46] WU J X, YANG S, CAI W, et al. Multi-characterization of LiCoO2 cathode films using advanced AFM-based techniques with high resolution[J]. Sci. Rep., 2017, 7(1):11164-11172. |