储能科学与技术 ›› 2019, Vol. 8 ›› Issue (6): 1050-1061.doi: 10.12028/j.issn.2095-4239.2019.0117
张利强1, 唐永福2, 刘秋男1, 孙海明1, 杨婷婷1, 黄建宇1,3
收稿日期:
2019-06-03
修回日期:
2019-06-29
出版日期:
2019-11-01
发布日期:
2019-07-31
通讯作者:
黄建宇,教授,主要研究方向为新能源材料,E-mail:jhuang@ysu.edu.cn。
作者简介:
张利强(1985-),男,副研究员,主要研究方向为原位透射电子显微学,E-mail:liqiangzhang85@163.com
基金资助:
ZHANG Liqiang1, TANG Yongfu2, LIU Qiunan1, SUN Haiming1, YANG Tingting1, HUANG Jianyu1,3
Received:
2019-06-03
Revised:
2019-06-29
Online:
2019-11-01
Published:
2019-07-31
摘要: 本文总结了原位透射电镜在电池研究领域的一些重要研究进展。虽然经过多年的研究,但是电极材料以及其与电解质界面(SEI)在充放电过程中结构、形貌、成分的变化过程还不清楚,以上结构演化与电池性能的相关性更是了解甚少,急需要设计一种新的实验技术可以在微观尺度上对其变化进行观察,原位透射电镜技术正是为了满足这样的需求而设计的。原位电镜拥有高时空分辨率和能量分辨率,可实时观察各类纳米电极材料及SEI在充放电过程中的微观变化。本文首先讨论在透射电镜中组装纳米电池的实验方法,然后讨论了应用此技术在研究锂离子电池、金属空气电池等领域的一些重要研究进展,最后对应用原位透射电镜技术研究电池的未来发展方向进行展望。原位透射电镜技术可以直接和实时观察电极材料和SEI在电化学反应中的微观变化行为,这对于深入了解电池失效机理和设计高性能电池具有重要指导意义。
中图分类号:
张利强, 唐永福, 刘秋男, 孙海明, 杨婷婷, 黄建宇. 原位透射电镜技术在电池领域的研究进展[J]. 储能科学与技术, 2019, 8(6): 1050-1061.
ZHANG Liqiang, TANG Yongfu, LIU Qiunan, SUN Haiming, YANG Tingting, HUANG Jianyu. Review of in situ transmission electron microscopy studies of battery materials[J]. Energy Storage Science and Technology, 2019, 8(6): 1050-1061.
[1] 张跃飞,李玉洁,王振宇,等.ZnO纳米电极材料原位锂化反应研宄[J].电子显微学报,2013, S1:2-3. ZHANG Y F, LI Y J, WANG Z Y, et al. The study of lithiation reaction of ZnO nano-electrode materials by in situ transmission electron microscopy[J]. Journal of Chinese Electron Microscopy Society, 2013, SI:2-3. [2] GOODENOUGH J B. Evolution of strategies for modem rechargeable batteries[J]. Accounts of Chemical Research, 2013, 46(5):1053-1061. [3] SCROSATI B, GARCHE J. Lithium batteries:Status, prospects and future[J]. Journal of Power Sources, 2010, 195(9):2419-2430. [4] Sony, EP391281.1989. [5] 吴宇平, 万春荣, 姜长印. 锂离子二次电池[M]. 北京:化学工业出版社, 2002. WU Y P, WAN C R, JIANG C Y. Lithium ion secondary battery[M]. Beijing:Chemical Industry Press, 2002. [6] 郭炳昆, 李新海, 杨松青. 化学电源:电池原理及制造技术[M]. 长沙:中南工业大学出版社, 2000. GUO B K, LI X H, YANG S Q. Chemical power:Principle and manufacturing technologies of batteries[M]. Changsha:Central South University of Technology Press, 2000. [7] ALBERTUS P, BABINEC S, LITZELMAN S, et al. Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries[J]. Nature Energy, 2018, 3(1):16-21. [8] TIRADO J L. Inorganic materials for the negative electrode of lithiumion batteries:State-of-the-art and future prospects[J]. Materials Science & Engineering R Reports, 2003, 40(3):103-136. [9] CHAN C K, PENG H, LIU G, et al. High-performance lithium battery anodes using silicon nanowires[J]. Nature Nanotechnology, 2008, 3(1):31-35. [10] MA J, CHEN B B, WANG L L, et al. Progress and prospect on failure mechanisms of solid-state lithium batteries[J]. Journal of Power Sources, 2018, 392:94-115. [11] MA J, HU P, CUI G L, et al. Surface and interface issues in spinel LiNi0.5Mn1.5O4:Insights into a potential cathode material for high energy density lithium-ion batteries[J]. Chemistry of Materials, 2016, 28(11):3578-3606. [12] LIU X H, HUANG J Y. In situ TEM electrochemistry of anode materials in lithium ion batteries[J]. Energy & Environmental Science, 2011, 4(10):3844-3860. [13] ROSSO M, BRISSOT C, TEYSSOT A, et al. Dendrite short-circuit and fuse effect on Li/polymer/Li cells[J]. Electrochimica Acta, 2006, 51(25):5334-5340. [14] DOLLÉ M, SANNIER L, BEAUDOIN B, et al. Live scanning electron microscope observations of dendritic growth in lithium/polymer cells[J]. Electrochemical and Solid-State Letters, 2002, 5(12):A286-A289. [15] BALASUBRAMANIAN M, SUN X, YANG X, et al. In situ X-ray diffraction and X-ray absorption studies of high-rate lithium-ion batteries[J]. Journal of Power Sources, 2001, 92(1/2):1-8. [16] KONG F, KOSTECKI R, NADEAU G, et al. In situ studies of SEI formation[J]. Journal of Power Sources, 2001, 97:58-66. [17] WANG L F, XU Z, WANG W L, et al. Atomic mechanism of dynamic electrochemical lithiation processes of MoS2 nanosheets[J]. Journal of the American Chemical Society, 2014, 136(18):6693-6697. [18] GAO P, WANG L P, ZHANG Y Y, et al. Atomic-scale probing of the dynamics of sodium transport and intercalation-induced phase transformations in MoS2[J]. ACS Nano, 2015, 9(11):11296-11301. [19] ZHANG L Q, WANG Y C, XIE D G, et al. In situ transmission electron microscopy study of the electrochemical sodiation process for a single CuO nanowire electrode[J]. RSC Advances, 2016, 6(14):11441-11445. [20] YAO L B, XIA W W, ZHANG H T, et al. In situ visualization of sodium transport and conversion reactions of FeS2 nanotubes made by morphology engineering[J]. Nano Energy, 2019, 60:424-431. [21] LIU H H, ZHENG H, LI L, et al. Surface-coating-mediated electrochemical performance in CuO nanowires during the sodiationdesodiation cycling[J]. Advanced Materials Interfaces, 2018, 5(4):doi:10.1002/admi·201701255. [22] HUANG J Y, ZHONG L, WANG C M, et al. In situ observation of the electrochemical lithiation of a single SnO2 nanowire electrode[J]. Science, 2010, 330(6010):1515-1520. [23] ZHOU W D, WANG C M, ZHANG Q L, et al. Tailoring pore size of nitrogen-doped hollow carbon nanospheres for confining sulfur in lithiumsulfur batteries[J]. Advanced Energy Materials, 2015, 5(16):doi:10.1002/aenm·201401752. [24] LIU W R, YANG M H, WU H C, et al. Enhanced cycle life of Si anode for Li-ion batteries by using modified elastomeric binder[J]. Electrochemical and Solid-State Letters, 2005, 8(2):A100-A103. [25] LI H, HUANG X J, CHEN L Q, et al. The crystal structural evolution of nano-Si anode caused by lithium insertion and extraction at room temperature[J]. Solid State Ionics, 2000, 135(1-4):181-191. [26] LIU X H, ZHONG L, HUANG S, et al. Size-dependent fracture of silicon nanoparticles during lithiation[J]. ACS Nano, 2012, 6(2):1522-1531. [27] LIU X H, ZHANG L Q, ZHONG L, et al. Ultrafast electrochemical lithiation of individual Si nanowire anodes[J]. Nano Letters, 2011, 11(6):2251-2258. [28] WANG Y, ZENG H C, LEE J Y. Highly reversible lithium storage in porous SnO2 nanotubes with coaxially grown carbon nanotube overlayers[J]. Advanced Materials, 2006, 18(5):645-649. [29] ZHAO N H, YANG L C, ZHANG P, et al. Polycrystalline SnO2 nanowires coated with amorphous carbon nanotube as anode material for lithium ion batteries[J]. Materials Letters, 2010, 64(8):972-975. [30] YUE Y H, LIU P, ZHANG Z, et al. Approaching the theoretical elastic strain limit in copper nanowires[J]. Nano Letters, 2011, 11(8):3151-3155. [31] ZHANG W M, HU J S, GUO Y G, et al. Tin-nanoparticles encapsulated in elastic hollow carbon spheres for high-performance anode material in lithium-ion batteries[J]. Advanced Materials, 2008, 20(6):1160-1165. [32] JI X X, HUANG X T, LIU J P, et al. Carbon-coated SnO2 nanorod array for lithium-ion battery anode material[J]. Nanoscale Research Letters, 2010, 5(3):649-653. [33] TARASCON J M, ARMAND M. Issues and challenges facing rechargeable lithium batteries[J]. Nature, 2001, 414(6861):359-367. [34] CHAN C K, PENG H, LIU G, et al. High-performance lithium battery anodes using silicon nanowires[J]. Nature Nanotechnology, 2008, 3(1):31-35. [35] KANG B, CEDER G. Battery materials for ultrafast charging and discharging[J]. Nature, 2009, 458(7235):190-193. [36] CUI L F, RUFFO R, CHAN C K, et al. Crystalline-amorphous coreshell silicon nanowires for high capacity and high current battery electrodes[J]. Nano Letters, 2008, 9(1):491-495. [37] ZHANG L Q, LIU X H, LIU Y, et al. Controlling the lithiation-induced strain and charging rate in nanowire electrodes by coating[J]. ACS Nano, 2011, 5(6):4800-4809. [38] 张利强. ZnO基半导体p型、稀磁掺杂研究与纳米锂离子电池原位透射电镜分析[D]. 杭州:浙江大学, 2012. ZHANG L Q. ZnO-based semiconductor p-type, diluted magnetic doping research and in situ transmission electron microscopy analysis of nano-lithium ion battery[D]. Hangzhou:Zhejiang University, 2012. [39] SHAO Y Y, DING F, XIAO J, et al. Making Li-air batteries rechargeable:Material challenges[J]. Advanced Functional Materials, 2013, 23(8):987-1004. [40] MITCHELL R R, GALLANT B M, THOMPSON C V, et al. Allcarbon-nanofiber electrodes for high-energy rechargeable Li-O2 batteries[J]. Energy & Environmental Science, 2011, 4(8):2952-2958. [41] LUO L L, LIU B, SONG S D, et al. Revealing the reaction mechanisms of Li-O2 batteries using environmental transmission electron microscopy[J]. Nature Nanotechnology, 2017, 12(6):535-539. [42] YANG T T, JIA P, LIU Q N, et al. Air-stable lithium spheres produced by electrochemical plating[J]. Angewandte Chemie International Edition, 2018, 130(39):12932-12935. [43] LIU Q N, GENG L, YANG T T, et al. In situ imaging electrocatalysis in a Na-O2 battery with Au-coated MnO2 nanowires air cathode[J]. Energy Storage Materials, 2019, 19:48-55. [44] EFTEKHARI A, JIAN Z L, JI X L. Potassium secondary batteries[J]. ACS Applied Materials & Interfaces, 2016, 9(5):4404-4019. [45] MARCUS Y. Thermodynamic functions of transfer of single ions from water to nonaqueous and mixed solvents:Part 3-Standard potentials of selected electrodes[J]. Pure and Applied Chemistry, 1985, 57(8):1129-1132. [46] ZHANG L Q, TANG Y S, LIU Q N, et al. Probing the charging and discharging behavior of K-CO2 nanobatteries in an aberration corrected environmental transmission electron microscope[J]. Nano Energy, 2018, 53:544-549. [47] LI Y Z, LI Y B, PEI A, et al. Atomic structure of sensitive battery materials and interfaces revealed by cryo-electron microscopy[J]. Science, 2017, 358(6362):506-510. [48] ZACHMAN M J, TU Z Y, CHOUDHURY S, et al. Cryo-STEM mapping of solid-liquid interfaces and dendrites in lithium-metal batteries[J]. Nature, 2018, 560(7718):345-349. [49] GAO P, ISHIKAWA R, TOCHIGI E, et al. Atomic-scale tracking of a phase transition from spinel to rocksalt in lithium manganese oxide[J]. Chemistry of Materials, 2017, 29(3):1006-1013. [50] YAN P F, ZHENG J M, TANG Z K, et al. Injection of oxygen vacancies in the bulk lattice of layered cathodes[J]. Nature Nanotechnology, 2019, 14:602-608. [51] GONG Y, ZHANG J N, JIANG L W, et al. In situ atomic-scale observation of electrochemical delithiation induced structure evolution of LiCoO2 cathode in a working all-solid-state battery[J]. Journal of the American Chemical Society, 2017, 139(12):4274-4277.s[J]. Electrochemical and Solid-State Letters, 2002, 5(12):A286-A289. [15] BALASUBRAMANIAN M, SUN X, YANG X, et al. In situ X-ray diffraction and X-ray absorption studies of high-rate lithium-ion batteries[J]. Journal of Power Sources, 2001, 92(1-2):1-8. [16] KONG F, KOSTECKI R, NADEAU G, et al. In situ studies of SEI formation[J]. Journal of Power Sources, 2001, 97:58-66. [17] WANG L F, XU Z, WANG W L, et al. Atomic mechanism of dynamic electrochemical lithiation processes of MoS2 nanosheets[J]. Journal of the American Chemical Society, 2014, 136(18):6693-6697. [18] GAO P, WANG L P, ZHANG Y Y, et al. Atomic-scale probing of the dynamics of sodium transport and intercalation-induced phase transformations in MoS2[J]. Acs Nano, 2015, 9(11):11296-11301. [19] ZHANG L Q, WANG Y C, XIE D G, et al. In situ transmission electron microscopy study of the electrochemical sodiation process for a single CuO nanowire electrode[J]. RSC Advances, 2016, 6(14):11441-11445. [20] YAO L B, XIA W W, ZHANG H T, et al. In situ visualization of sodium transport and conversion reactions of FeS2 nanotubes made by morphology engineering[J]. Nano Energy, 2019, 60:424-431. [21] LIU H H, ZHENG H, LI L, et al. Surface-coating-mediated electrochemical performance in CuO nanowires during the sodiation-desodiation cycling[J]. Advanced Materials Interfaces, 2018, 5(4):1701255. [22] HUANG J Y, ZHONG L, WANG C M, et al. In situ observation of the electrochemical lithiation of a single SnO2 nanowire electrode[J]. Science, 2010, 330(6010):1515-1520. [23] ZHOU W D, WANG C M, ZHANG Q L, et al. Tailoring pore size of nitrogen-doped hollow carbon nanospheres for confining sulfur in lithium-sulfur batteries[J]. Advanced Energy Materials, 2015, 5(16):1401752. [24] LIU W R, YANG M H, WU H C, et al. Enhanced cycle life of Si anode for Li-ion batteries by using modified elastomeric binder[J]. Electrochemical and Solid-State Letters, 2005, 8(2):A100-A103. [25] LI H, HUANG X J, CHEN L Q, et al. The crystal structural evolution of nano-Si anode caused by lithium insertion and extraction at room temperature[J]. Solid State Ionics, 2000, 135(1-4):181-191. [26] LIU X H, ZHONG L, HUANG S, et al. Size-dependent fracture of silicon nanoparticles during lithiation[J]. ACS Nano, 2012, 6(2):1522-1531. [27] LIU X H, ZHANG L Q, ZHONG L, et al. Ultrafast electrochemical lithiation of individual Si nanowire anodes[J]. Nano Letters, 2011, 11(6):2251-2258. [28] WANG Y, ZENG H C, LEE J Y. Highly reversible lithium storage in porous SnO2 nanotubes with coaxially grown carbon nanotube overlayers[J]. Advanced Materials, 2006, 18(5):645-649. [29] ZHAO N H, YANG L C, ZHANG P, et al. Polycrystalline SnO2 nanowires coated with amorphous carbon nanotube as anode material for lithium ion batteries[J]. Materials Letters, 2010, 64(8):972-975. [30] YUE Y H, LIU P, ZHANG Z, et al. Approaching the theoretical elastic strain limit in copper nanowires[J]. Nano Letters, 2011, 11(8):3151-3155. [31] ZHANG W M, HU J S, GUO Y G, et al. Tin-nanoparticles encapsulated in elastic hollow carbon spheres for high-performance anode material in lithium-Ion batteries[J]. Advanced Materials, 2008, 20(6):1160-1165. [32] JI X X, HUANG X T, LIU J P, et al. Carbon-coated SnO2 nanorod array for lithium-ion battery anode material[J]. Nanoscale Research Letters, 2010, 5(3):649-653. [33] TARASCON J M, ARMAND M. Issues and challenges facing rechargeable lithium batteries[J]. Nature, 2001, 414(6861):359-367. [34] CHAN C K, PENG H, LIU G, et al. High-performance lithium battery anodes using silicon nanowires[J]. Nature Nanotechnology, 2008, 3(1):31-35. [35] KANG B, CEDER G. Battery materials for ultrafast charging and discharging[J]. Nature, 2009, 458(7235):190-193. [36] CUI L-F, RUFFO R, CHAN C K, et al. Crystalline-amorphous core-shell silicon nanowires for high capacity and high current battery electrodes[J]. Nano Letters, 2008, 9(1):491-495. [37] ZHANG L Q, LIU X H, LIU Y, et al. Controlling the lithiation-induced strain and charging rate in nanowire electrodes by coating[J]. ACS Nano, 2011, 5(6):4800-4809. [38] 张利强. ZnO基半导体p型、稀磁掺杂研究与纳米锂离子电池原位透射电镜分析[D]. 浙江大学, 2012. ZHANG L Q. ZnO-based semiconductor p-type, diluted magnetic doping research and in situ transmission electron microscopy analysis of nano-lithium ion battery[D]. Zhejiang University, 2012. [39] SHAO Y Y, DING F, XIAO J, et al. Making Li-air batteries rechargeable:Material challenges[J]. Advanced Functional Materials, 2013, 23(8):987-1004. [40] MITCHELL R R, GALLANT B M, THOMPSON C V, et al. All-carbon-nanofiber electrodes for high-energy rechargeable Li-O2 batteries[J]. Energy & Environmental Science, 2011, 4(8):2952-2958. [41] LUO L L, LIU B, SONG S D, et al. Revealing the reaction mechanisms of Li-O2 batteries using environmental transmission electron microscopy[J]. Nature Nanotechnology, 2017, 12(6):535-539. [42] YANG T T, JIA P, LIU Q N, et al. Air-stable lithium spheres produced by electrochemical plating[J]. Angewandte Chemie International Edition, 2018, 130(39):12932-12935. [43] LIU Q N, GENG L, YANG T T, et al. In situ imaging electrocatalysis in a Na-O2 battery with Au-coated MnO2 nanowires air cathode[J]. Energy Storage Materials, 2019,19:48-55. [44] EFTEKHARI A, JIAN Z L, JI X L. Potassium secondary batteries[J]. ACS Applied Materials & Interfaces, 2016, 9(5):4404-4019. [45] MARCUS Y. Thermodynamic functions of transfer of single ions from water to nonaqueous and mixed solvents:Part 3-Standard potentials of selected electrodes[J]. Pure and Applied Chemistry, 1985, 57(8):1129-1132. [46] ZHANG L Q, TANG Y S, LIU Q N, et al. Probing the charging and discharging behavior of K-CO2 nanobatteries in an aberration corrected environmental transmission electron microscope[J]. Nano Energy, 2018, 53:544-549. [47] LI Y Z, LI Y B, PEI A, et al. Atomic structure of sensitive battery materials and interfaces revealed by cryo-electron microscopy[J]. Science, 2017, 358(6362):506-510. [48] ZACHMAN M J, TU Z Y, CHOUDHURY S, et al. Cryo-STEM mapping of solid-liquid interfaces and dendrites in lithium-metal batteries[J]. Nature, 2018, 560(7718):345-349. [49] GAO P, ISHIKAWA R, TOCHIGI E, et al. Atomic-scale tracking of a phase transition from spinel to rocksalt in Lithium Manganese Oxide[J]. Chemistry of Materials, 2017, 29(3):1006-1013. [50] YAN P F, ZHENG J M, TANG Z-K, et al. Injection of oxygen vacancies in the bulk lattice of layered cathodes[J]. Nature Nanotechnology, 2019, 14:602-608. [51] GONG Y, ZHANG J N, JIANG L W, et al. In situ atomic-scale observation of electrochemical delithiation induced structure evolution of LiCoO2 cathode in a working all-solid-state battery[J]. Journal of the American Chemical Society, 2017, 139(12):4274-4277. |
[1] | 李海涛, 孔令丽, 张欣, 余传军, 王纪威, 徐琳. N/P设计对高镍NCM/Gr电芯性能的影响[J]. 储能科学与技术, 2022, 11(7): 2040-2045. |
[2] | 刘显茜, 孙安梁, 田川. 基于仿生翅脉流道冷板的锂离子电池组液冷散热[J]. 储能科学与技术, 2022, 11(7): 2266-2273. |
[3] | 易顺民, 谢林柏, 彭力. 基于VF-DW-DFN的锂离子电池剩余寿命预测[J]. 储能科学与技术, 2022, 11(7): 2305-2315. |
[4] | 祝庆伟, 俞小莉, 吴启超, 徐一丹, 陈芬放, 黄瑞. 高能量密度锂离子电池老化半经验模型[J]. 储能科学与技术, 2022, 11(7): 2324-2331. |
[5] | 王宇作, 王瑨, 卢颖莉, 阮殿波. 孔结构对软碳负极储锂性能的影响[J]. 储能科学与技术, 2022, 11(7): 2023-2029. |
[6] | 陈龙, 夏权, 任羿, 曹高萍, 邱景义, 张浩. 多物理场耦合下锂离子电池组可靠性研究现状与展望[J]. 储能科学与技术, 2022, 11(7): 2316-2323. |
[7] | 孔为, 金劲涛, 陆西坡, 孙洋. 对称蛇形流道锂离子电池冷却性能[J]. 储能科学与技术, 2022, 11(7): 2258-2265. |
[8] | 霍思达, 薛文东, 李新丽, 李勇. 基于CiteSpace知识图谱的锂电池复合电解质可视化分析[J]. 储能科学与技术, 2022, 11(7): 2103-2113. |
[9] | 邓健想, 赵金良, 黄成德. 高能量锂离子电池硅基负极黏结剂研究进展[J]. 储能科学与技术, 2022, 11(7): 2092-2102. |
[10] | 欧宇, 侯文会, 刘凯. 锂离子电池中的智能安全电解液研究进展[J]. 储能科学与技术, 2022, 11(6): 1772-1787. |
[11] | 韩俊伟, 肖菁, 陶莹, 孔德斌, 吕伟, 杨全红. 致密储能:基于石墨烯的方法学和应用实例[J]. 储能科学与技术, 2022, 11(6): 1865-1873. |
[12] | 辛耀达, 李娜, 杨乐, 宋维力, 孙磊, 陈浩森, 方岱宁. 锂离子电池植入传感技术[J]. 储能科学与技术, 2022, 11(6): 1834-1846. |
[13] | 燕乔一, 吴锋, 陈人杰, 李丽. 锂离子电池负极石墨回收处理及资源循环[J]. 储能科学与技术, 2022, 11(6): 1760-1771. |
[14] | 沈秀, 曾月劲, 李睿洋, 李佳霖, 李伟, 张鹏, 赵金保. γ射线辐照交联原位固态化阻燃锂离子电池[J]. 储能科学与技术, 2022, 11(6): 1816-1821. |
[15] | 张言, 王海, 刘朝孟, 张德柳, 王佳东, 李建中, 高宣雯, 骆文彬. 锂离子电池富镍三元正极材料NCM的研究进展[J]. 储能科学与技术, 2022, 11(6): 1693-1705. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||