[1] 王其钰, 王朔, 张杰男, 等. 锂离子电池失效分析概述[J]. 储能科学与技术, 2017, 6(5):1008-1025. WANG Qiyu, WANG Shuo, ZHANG Jienan, et al. Overview of the failure analysis of lithium ion batteries[J]. Energy Storage Science and Technology, 2017, 6(5):1008-1025.
[2] ZHU Y, XIE J, PEI A, et al. Fast lithium growth and short circuit induced by localized-temperature hotspots in lithium batteries[J]. Nature Communications, 2019, 10(1):doi:https://doi.org/10.1038/s41467-019-09924-1.
[3] GROSS T, GIEBELER L HESS C. Novel in situ cell for Raman diagnostics of lithium-ion batteries[J]. Review of Scientific Instruments, 2013, 84(7):doi:10.1063/1.4813263.
[4] BRISSOT C, ROSSO M, CHAZALVIEL J N, et al. In situ study of dendritic growth inlithium/PEO-salt/lithium cells[J]. Electrochimica Acta, 1998, 43(10/11):1569-1574.
[5] GUO Z, ZHU J, FENG J, et al. Direct in situ observation and explanation of lithium dendrite of commercial graphite electrodes[J]. RSC Advances, 2015, 5(85):69514-69521.
[6] HARRIS S J, TIMMONS A, BAKER D R, et al. Direct in situ measurements of Li transport in Li-ion battery negative electrodes[J]. Chemical Physics Letters, 2010, 485(4/5/6):265-274.
[7] CHEN D, INDRIS S, SCHULZ M, et al. In situ scanning electron microscopy on lithium-ion battery electrodes using an ionic liquid[J]. Journal of Power Sources, 2011, 196(15):6382-6387.
[8] GOLOZAR M, HOVINGTON P, PAOLELLA A, et al. In situ scanning electron microscopy detection of carbide nature of dendrites in Lipolymer batteries[J]. Nano Letters, 2018, 18(12):7583-7589.
[9] MILLER D J, PROFF C, WEN J G, et al. Observation of microstructural evolution in Li battery cathode oxide particles by in situ electron microscopy[J]. Advanced Energy Materials, 2013, 3(8):1098-1103.
[10] STEIGER J, KRAMER D, MöNIG R. Microscopic observations of the formation, growth and shrinkage of lithium moss during electrodeposition and dissolution[J]. Electrochimica Acta, 2014, 136:529-536.
[11] HUANG J Y, ZHONG L, WANG C M, et al. In situ observation of the electrochemical lithiation of a single SnO2 nanowire electrode[J]. Science, 2010, 330(6010):1515-1520.
[12] LIU X H, HUANG J Y. In situ TEM electrochemistry of anode materials in lithium ion batteries[J]. Energy & Environmental Science, 2011, 4(10):3844-3860.
[13] LIU X H, LIU Y, KUSHIMA A, et al. In situ TEM experiments of electrochemical lithiation and delithiation of individual nanostructures[J]. Advanced Energy Materials, 2012, 2(7):722-741.
[14] LEE H W, LI Y CUI Y. Perspectives in in situ transmission electron microscopy studies on lithium battery electrodes[J]. Current Opinion in Chemical Engineering, 2016, 12:37-43.
[15] YANG Z, ONG P V, HE Y, et al. Direct visualization of Li dendrite effect on LiCoO2 cathode by in situ TEM[J]. Small, 2018, 14(52):doi:10.1002/smll.201870252.
[16] ABELLAN P, MEHDI B L, PARENT L R, et al. Probing the degradation mechanisms in electrolyte solutions for Li-ion batteries by in situ transmission electron microscopy[J]. Nano Letters, 2014, 14(3):1293-1299.
[17] ZENG Z, LIANG W I, LIAO H G, et al. Visualization of electrodeelectrolyte interfaces in LiPF6/EC/DEC electrolyte for lithium ion batteries via in situ TEM[J]. Nano Letters, 2014, 14(4):1745-1750.
[18] ROSS F M. Opportunities and challenges in liquid cell electron microscopy[J]. Science, 2015, 350(6267):doi:10.1126/science. aaa9886.
[19] WU F, YAO N. Advances in sealed liquid cells for in-situ TEM electrochemial investigation of lithium-ion battery[J]. Nano Energy, 2015, 11:196-210.
[20] WHEATCROFT L, ÖZKAYA D, COOKSON J, et al. Towards in-situ TEM for Li-ion battery research[J]. Energy Procedia, 2018, 151:163-167.
[21] TRIPATHI A M, SU W N HWANG B J. In situ analytical techniques for battery interface analysis[J]. Chemical Society Reviews, 2018, 47(3):736-851.
[22] SHUI J L, OKASINSKI J S, KENESEI P, et al. Reversibility of anodic lithium in rechargeable lithium-oxygen batteries[J]. Nature Communications, 2013, 4:doi:10.1038/ncomms3255.
[23] CHATTOPADHYAY S, LIPSON A L, KARMEL H J, et al. In situ X-ray study of the solid electrolyte interphase (SEI) formation on graphene as a model Li-ion battery anode[J]. Chemistry of Materials, 2012, 24(15):3038-3043.
[24] CHENG J H, ASSEGIE A A, HUANG C J, et al. Visualization of lithium plating and stripping via in operando transmission X-ray microscopy[J]. The Journal of Physical Chemistry C, 2017, 121(14):7761-7766.
[25] EBNER M, MARONE F, STAMPANONI M, et al. Visualization and quantification of electrochemical and mechanical degradation in Li ion batteries[J]. Science, 2013, 342(6159):716-720.
[26] HARRY K J, HALLINAN D T, PARKINSON D Y, et al. Detection of subsurface structures underneath dendrites formed on cycled lithium metal electrodes[J]. Nature Materials, 2014, 13(1):doi:10.1038/nmat3793.
[27] 刘湘思, 向宇轩, 钟贵明, 等. 锂/钠离子电池材料的固体核磁共振谱研究进展[J]. 电源技术, 2019, 43(1):5-12. LIU Xiangsi, XIANG Yuxuan, ZHONG Guiming, et al. Recent progress in solid-state NMR spectroscopy study of electrode/electrolyte materials for lithium/sodium ion batteries[J]. Chinese Journal of Power Sources, 2019, 43(1):5-12.
[28] LETELLIER M, CHEVALLIER F, MORCRETTE M. In situ 7Li nuclear magnetic resonance observation of the electrochemical intercalation of lithium in graphite; 1st cycle[J]. Carbon, 2007, 45(5):1025-1034.
[29] KEY B, BHATTACHARYYA R, MORCRETTE M, et al. Real-time NMR investigations of structural changes in silicon electrodes for lithium-ion batteries[J]. Journal of the American Chemical Society, 2009, 131(26):9239-9249.
[30] BHATTACHARYYA R, KEY B, CHEN H, et al. In situ NMR observation of the formation of metallic lithium microstructures in lithium batteries[J]. Nature Materials, 2010, 9(6):504-510.
[31] CHANDRASHEKAR S, TREASE N M, CHANG H J, et al. 7Li MRI of Li batteries reveals location of microstructural lithium[J]. Nature Materials, 2012, 11(4):311-315.
[32] KLETT M, GIESECKE M, NYMAN A, et al. Quantifying mass transport during polarization in a Li ion battery electrolyte by in situ 7Li NMR imaging[J]. Journal of the American Chemical Society, 2012, 134(36):14654-14657.
[33] ARAI J, OKADA Y, SUGIYAMA T, et al. In situ solid state 7Li NMR observations of lithium metal deposition during overcharge in lithium ion batteries[J]. Journal of the Electrochemical Society, 2015, 162(6):A952-A958.
[34] CHANG H J, ILOTT A J, TREASE N M, et al. Correlating microstructural lithium metal growth with electrolyte salt depletion in lithium batteries using 7Li MRI[J]. Journal of the American Chemical Society, 2015, 137(48):15209-15216.
[35] PECHER O, BAYLEY P M, LIU H, et al. Automatic tuning matching cycler (ATMC) in situ NMR spectroscopy as a novel approach for realtime investigations of Li-and Na-ion batteries[J]. Journal of Magnetic Resonance, 2016, 265:200-209.
[36] WIEMERS-MEYER S, WINTER M, NOWAK S. A battery cell for in situ NMR measurements of liquid electrolytes[J]. Physical Chemistry Chemical Physics, 2017, 19(7):4962-4966.
[37] ZINTH V, VON LüDERS C, HOFMANN M, et al. Lithium plating in lithium-ion batteries at sub-ambient temperatures investigated by in situ neutron diffraction[J]. Journal of Power Sources, 2014, 271:152-159.
[38] VON LüDERS C, ZINTH V, ERHARD S V, et al. Lithium plating in lithium-ion batteries investigated by voltage relaxation and in situ neutron diffraction[J]. Journal of Power Sources, 2017, 342:17-23.
[39] SMART M C, RATNAKUMAR B V, WHITCANACK L, et al. Performance characteristics of lithium ion cells at low temperatures[J]. IEEE Aerospace and Electronic Systems Magazine, 2002, 17(12):16-20.
[40] SMART M C, RATNAKUMAR B V. Effects of electrolyte composition on lithium plating in lithium-ion cells[J]. Journal of The Electrochemical Society, 2011, 158(4):A379-A389.
[41] BUGGA R V, SMART M C. Lithium plating behavior in lithium-ion cells[J]. ECS Transaction, 2010, 25(36):241-252.
[42] PETZL M, DANZER M A. Nondestructive detection, characterization, and quantification of lithium plating in commercial lithium-ion batteries[J]. Journal of Power Sources, 2014, 254:80-87.
[43] PETZL M, KASPER M, DANZER M A. Lithium plating in a commercial lithium-ion battery-A low-temperature aging study[J]. Journal of Power Sources, 2015, 275:799-807.
[44] WALDMANN T, WILKA M, KASPER M, et al. Temperature dependent ageing mechanisms in lithium-ion batteries-A Post-Mortem study[J]. Journal of Power Sources, 2014, 262:129-135.
[45] 张剑波, 苏来锁, 李新宇, 等. 基于锂离子电池老化行为的析锂检测[J]. 电化学, 2016, 22(6):607-616. ZHANG Jianbo, SU Laisuo, LI Xinyu, et al. Lithium plating detection based on aging behavior of lithium ion cells[J]. Journal of Electrochemistry, 2016, 22(6):607-616.
[46] QI Y, HARRIS S J. In situ observation of strains during lithiation of a graphite electrode[J]. Journal of the Electrochemical Society, 2010, 157(6):A741-A747.
[47] KONAR S, HäUSSERMAN U, SVENSSON G. Intercalation compounds from LiH and graphite:Relative stability of metastable stages and thermodynamic stability of dilute stage Id[J]. Chemistry of Materials, 2015, 27(7):2566-2575.
[48] OHZUKU T, MATOBA N, SAWAI K. Direct evidence on anomalous expansion of graphite-negative electrodes on first charge by dilatometry[J]. Journal of Power Sources, 2001, 97:73-77.
[49] TAMINATO S, YONEMURA M, SHIOTANI S, et al. Real-time observations of lithium battery reactions-Operando neutron diffraction analysis during practical operation[J]. Scientific Reports, 2016, 6:doi:10.1038/srep28843.
[50] SHARMA N, PETERSON V K, ELCOMBE M M, et al. Structural changes in a commercial lithium-ion battery during electrochemical cycling:An in situ neutron diffraction study[J]. Journal of Power Sources, 2010, 195(24):8258-8266.
[51] BITZER B GRUHLE A. A new method for detecting lithium plating by measuring the cell thickness[J]. Journal of Power Sources, 2014, 262:297-302.
[52] BURNS J C,STEVENS D A, DAHN J R. In-situ detection of lithium plating using high precision coulometry[J]. Journal of Electrochemical Society, 2015, 162(6):A959-A964.
[53] LIU Q Q, PETIBON R, DU C Y, et al. Effects of electrolyte additives and solvents on unwanted lithium plating in lithium-ion cells[J]. Journal of the Electrochemical Society, 2017, 164(6):A1173-A1183. |