[1] 宋洁, 赵波, 梁丹曦, 等. 压缩空气膨胀发电系统最大效率跟踪控制策略[J]. 储能科学与技术, 2017, 6(1):154-161. SONG Jie, ZHAO Bo, LIANG Danxi, et al. Strategy for tracking maximum efficiency of a expander-generator system of compressed air energy storage[J]. Energy Storage Science and Technology, 2017, 6(1):154-161.
[2] 罗宁, 何青, 刘文毅. 压缩空气储能系统储气装置研究现状与分析[J]. 储能科学与技术, 2018, 7(3):489-494. LUO Ning, HE Qing, LIU Wenyi. The development status and energy storage characteristic of gas storage device of compressed air energy storage system[J]. Energy Storage Science and Technology, 2018, 7(3):489-494.
[3] 高建强, 庄绪增, 敬赛. CAES电站储气室热力学特性的数值模拟研究[J]. 电力科学与工程, 2018, 34(12):67-72. GAO Jianqiang, ZUANG Xuzeng, JING Sai. Numerical simulation study on thermodynamic characteristics of gas storage chamber of CAES power station[J]. Electric Power Science and Engineering, 2018, 34(12):67-72.
[4] 张阳, 左志涛, 梁奇, 等. 离心压缩机可调叶片扩压器优化设计与调节分析[J]. 储能科学与技术, 2017, 6(6):1231-1238. ZHANG Yang, ZUO Zhitao, LIANG Qi, et al. Optimal design and adjustment analysis of an adjustable vane diffuser in a centrifugal compressor[J]. Energy Storage Science and Technology, 2017, 6(6):1231-1238.
[5] BARTON John, INFIELD David. Energy storage and its use with intermittent renewable energy[J]. IEEE Transactions on Energy Conversion, 2004, 19(2):441-448.
[6] 魏军英, 王鹏, 王吉岱, 等. 微型压缩空气储能系统工作特性研究[J]. 热力发电, 2019(3):28-34. WEI Junying, WANG Peng, WANG Jidai, et al. Working characteristics of micro compressed air energy storage system[J]. Thermal Power Generation, 2019(3):28-34.
[7] 陈海生, 刘金超, 郭欢, 等. 压缩空气储能技术原理[J]. 储能科学与技术, 2013, 2(2):146-151. CHEN Haisheng, LIU Jinchao, GUO Huan, et al. Technical principle of compressed air energy storage system[J]. Energy Storage Science and Technology, 2013, 2(2):146-151.
[8] 薛皓白, 张新敬, 陈海生, 等. 微型压缩空气储能系统释能过程分析[J]. 工程热物理学报, 2014, 35(10):1923-1929. XUE Haobai, ZHANG Xinjing, CHEN Haisheng, et al. Analysis of energy release process of micro-compressed air energy storage systems[J]. Journal of Engineering Thermophysics, 2014, 35(10):1923-1929.
[9] CHANG Jenchieh, CHANG Chaowei, HUNG Tzuchen, et al. Experimental study and CFD approach for scroll type expander used in low-temperature organic Rankine cycle[J]. Applied Thermal Engineering, 2014, 73(2):1444-1452.
[10] MORINI Mirko, PAVAN Claudio, PINELLI Michile, et al. Analysis of a scroll machine for micro ORC applications by means of a RE/CFD methodology[J]. Applied Thermal Engineering, 2015(80):132-140.
[11] SONG Panpan, WEI Mingshan, LIU Zhen, et al. Effects of suction port arrangements on a scroll expander for a small scale ORC system based on CFD approach[J]. Applied Energy, 2015(150):274-285.
[12] SONG Panpan, WEI Mingshan, ZHANG Yangjun, et al. The impact of a bilateral symmetric discharge structure on the performance of a scroll expander for ORC power generation system[J]. Energy, 2018(158):458-470.
[13] LIU Zhen, WEI Mingshan, SONG Panpan, et al. The fluid-thermalsolid coupling analysis of a scroll expander used in an ORC waste heat recovery system[J]. Applied Thermal Engineering, 2018(138):72-78.
[14] 刘祯, 吴华伟, 张琎, 等. 压缩空气储能用涡旋膨胀机非稳态流动特性分析[J]. 储能科学与技术, 2019, 8(2):357-364. LIU Zhen, WU Huawei, ZHANG Jin, KUANG Yong. Numerical investigations on unsteady flow of a scroll expander for compressed air energy storage[J]. Energy Storage Science and Technology, 2019, 8(2):357-364.
[15] DECLAY Sebastien, QUOILIN Sylvain, GUILLAUME Ludovic, et al. Experimental study on an open-drive scroll expander integrated into an ORC (Organic Rankine Cycle) system with R245fa as working fluid[J]. Energy, 2013, 55:173-183.
[16] LEMORT Vincent, DECLAY Sebastien, QUOILIN Sylvain. Experimental characterization of a hermetic scroll expander for use in a micro-scale Rankine cycle[J]. Proceedings of the Institution of Mechanical Engineers, Part A:Journal of Power and Energy, 2012, 226(1):126-136. |