[1] HUANG K D, TZENG S C, CHANG W C. Energy-saving hybrid vehicle using a pneumatic-power system[J]. Applied Energy, 2005, 81:1-18. [2] SKERLOS S J, WINEBRAKE J J. Targeting plug-in hybrid electric vehicle policies to increase social benefits[J]. Energy Policy, 2010, 38:705-708. [3] SCROSATI B, GARCHE J. Lithium batteries:Status, prospects and future[J]. Journal of Power Sources, 2010, 195:2419-2430. [4] NISHIHARA M. Hybrid or electric vehicles?A real options perspective[J]. Operations Research Letters, 2010, 38:87-93. [5] JEONG G, KIM Y U, KIM H, et al. Prospective materials and applications for Li secondary batteries[J]. Energy Environmental Science, 2011, 4:1986-2002. [6] AVADIKYAN A, LLERENA P. A real options reasoning approach to hybrid vehicle investments[J]. Technological Forecasting&Social Change, 2010, 77:649-661. [7] 林深.动力锂离子电池热特性及热安全的试验研究[D].北京:北京工业大学, 2017. LIN Shen. The experimental study on thermal characteristics and thermal safety for power lithium-ion batteries[D]. Beijing:Beijing University of Technology, 2017. [8] 吴唐琴.锂离子电池产热和热诱导失控特性实验研究[D].合肥:中国科学技术大学, 2018. WU Tangqin. Experimental study on heat generation and thermal induced runaway of lithium-ion battery[D]. Hefei:University of Science and Technology of China, 2018. [9] WEN J, YU Y, CHEN C. A review on lithium-ion batteries safety issues:existing problems and possible solutions[J]. Materials Express, 2012, 2:197-212. [10] BANDHAUER T M, GARIMELLA S, FULLER T F. A critical review of thermal issues in lithium-ion batteries[J]. Journal of the Electrochemical Society, 2011, 158:R1-R25. [11] WANG Q, PING P, ZHAO X, et al. Thermal runaway caused fire and explosion of lithium ion battery[J]. Journal of Power Sources, 2012, 208:210-224. [12] FENG X, OUYANG M, LIU X, et al. Thermal runaway mechanism of lithium ion battery for electric vehicles:A review[J]. Energy Storage Materials, 2018, 10:246-267. [13] 赵学娟.锂离子电池在绝热条件下的循环产热研究[D].合肥:中国科学与技术大学, 2014. ZHAO Xuejuan. Heat generation of lithium ion battery during cycling under adiabatic condition[D]. Hefei:University of Science and Technology of China, 2014. [14] 云凤玲.能量锂离子动力电池的热性能及电化学-热耦合行为研究[D].北京:北京有色金属研究总院, 2016. YUN Fengling. Study on thermal performance and electrochemicalthermal couple behavior of high specific energy lithium ion power battery[D]. Beijing:General Research Institute for Nonferrous Metals, 2016. [15] HONG J, MALEKI H, HALLAJ S A, et al. Electrochemicalcalorimetric studies of lithium-ion cells[J]. Journal of the Electrochemical Society, 1998, 145:1489-1501. [16] HALLAJ S A, PRAKASH J, SELMAN J R. Characterization of commercial Li-ion batteries using lectrochemical-alorimetric measurements[J]. Journal of Power Sources, 2000, 87:186-194. [17] ONDA K, KAMEYAMA H, HANAMOTO T. Experimental study on heat generation behavior of small lithium-ion secondary batteries[J]. Journal of the Electrochemical Society, 2003, 150:A285-A291. [18] 李斌,常国峰,林春景,等.车用动力锂电池产热机理研究现状[J].电源技术, 2014, 38:378-381. LI Bin, CHANG Guofeng, LIN Chunjing, et al. Research on heat generate mechanism of Li-ion batteries for electric vehicles[J]. Chinese Journal of Power Sources, 2014, 38:378-381. [19] LU W, PRAKASH J. In situ measurements of heat generation in a Li/mesocarbon microbead half-cell[J]. Journal of the Electrochemical Society, 2003, 150:A262-A266. [20] LU W, BELHAROUAK I, VISSERS D. In situ thermal study of Li1+x[Ni1/3Co1/3Mn1/3]1-xO2 using isothermal micro-clorimetric techniques[J]. Journal of the Electrochemical Society, 2006, 153:A2147-A2151. [21] LU W, YANG H, PRAKASH J. Determination of the reversible and irreversible heats of LiNi0.8Co0.2O2/mesocarbon microbead Li-ion cell reactions using isothermal microcalorimetery[J]. Electrochimica Acta, 2006, 51:1322-1329. [22] LAI Y, DU S, AI L, et al. Insight into heat generation of lithium ion batteries based on the electrochemical-thermal model at high discharge rates[J]. International Journal of Hydrogen Energy, 2015, 40:13039-13049. [23] ZHAO R, GU J, LIU J. An investigation on the significance of reversible heat to the thermal behavior of lithium ion battery through simulations[J]. Journal of Power Sources, 2014, 266:422-432. [24] JEON D H, BAEK S M. Thermal modeling of cylindrical lithium ion battery during discharge cycle[J]. Energy Conversion and Management, 2011, 52:2973-2981. [25] INUI Y, KOBAYASHI Y, WATANABE Y. Simulation of temperature distribution in cylindrical and prismatic lithium ion secondary batteries[J]. Energy Conversion and Management, 2007, 48:2103-2109. [26] KWON K H, SHIN C B, KANG T H, et al. A two-dimensional modeling of a lithium-polymer battery[J]. Journal of Power Sources, 2006, 163:151-157. [27] KIM U S, SHIN C B, KIM C. Effect of electrode configuration on the thermal behavior of a lithium-polymer battery[J]. Journal of Power Sources, 2008, 180:909-916. [28] KIM U S, YI J, SHIN C B, et al. Modelling the thermal behaviour of a lithium-ion battery during charge[J]. Journal of Power Sources, 2011, 196:5115-5121. [29] YI J, KIM U S, SHIN C B, et al. Modeling the temperature dependence of the discharge behavior of a lithium-ion battery in low environmental temperature[J]. Journal of Power Sources 2013, 244:143-148. [30] KIM U S, YI J, SHIN C B, et al. Modeling the thermal behaviors of a lithium-ion battery during constant-power discharge and charge operations[J]. Journal of the Electrochemical Society, 2013, 160:A990-A995. [31] SPOTNITZ R, FRANKLIN J. Abuse behavior of high-power, lithiumion cells[J]. Journal of Power Sources, 2003, 113:81-100. [32] KIM G, PESARAN A, SPOTNITZ R. A three-dimensional thermal abuse model for lithium-ion cells[J]. Journal of Power Sources, 2007, 170:476-489. [33] CHIU K, LIN C, YEH S, et al. An electrochemical modeling of lithium-ion battery nail penetration[J]. Journal of Power Sources, 2014, 251:254-263. [34] WU T, CHEN H, WANG Q, et al. Comparison analysis on the thermal runaway of lithium-ion battery under two heating modes[J]. Journal of Hazardous Materials, 2018, 344:733-741. [35] YAMANAKA T, TAKAGISHI Y, TOZUKA Y, et al. Modeling lithium ion battery nail penetration tests and quantitative evaluation of the degree of combustion risk[J]. Journal of Power Sources, 2019, 416:132-140. [36] FINEGAN D P, DARST J, WALKER W, et al. Modelling and experiments to identify high-risk failure scenarios for testing the safety of lithium-ion cells[J]. Journal of Power Sources, 2019, 417:29-41. |