储能科学与技术 ›› 2019, Vol. 8 ›› Issue (6): 1062-1075.doi: 10.19799/j.cnki.2095-4239.2019.0205
冯小龙1,2, 杨乐3, 张明亮2, 陶然2, 韩雨2, 温家伟2, 王潘丁2, 宋维力2, 艾士刚1,2, 陈浩森2, 方岱宁2
收稿日期:
2019-09-16
修回日期:
2019-09-28
出版日期:
2019-11-01
发布日期:
2019-10-10
通讯作者:
陈浩森,副研究员,研究方向为先进能源电池材料与结构设计、制备与表征,E-mail:chenhs@bit.edu.cn。
作者简介:
冯小龙(1993-),男,硕士研究生,研究方向为锂离子电池膨胀变形机制,E-mail:18120994@bjtu.edu.cn
基金资助:
FENG Xiaolong1,2, YANG Le3, ZHANG Mingliang2, TAO Ran2, HAN Yu2, WEN Jiawei2, WANG Panding2, SONG Weili2, AI Shigang1,2, CHEN Haosen2, FANG Daining2
Received:
2019-09-16
Revised:
2019-09-28
Online:
2019-11-01
Published:
2019-10-10
摘要: 近年来,对高能量密度锂离子电池需求日益迫切,以硅基负极、三元正极为代表的高容量材料研究进展显著,与传统电极材料相比,其力学失效与热失控等问题也变得更为突出。从力学结构角度来看,锂电池电芯是典型的密封结构,在全寿命周期的服役过程中,在电池内部发生电/化/力/热多场耦合共同作用,因此,在位表征电池内部的力学与温度参量对揭示锂离子电池内部力学失效与热失控机理具有重要意义。着重介绍锂离子电池内部力学和热失效在位表征方法,包括:①内部力学量测量方法如原子力显微方法、在位光学方法、在位扫描电镜法、在位X射线断层扫描法等;②内部温度量测量方法如在位红外方法、内埋温度传感方法等。
中图分类号:
冯小龙, 杨乐, 张明亮, 陶然, 韩雨, 温家伟, 王潘丁, 宋维力, 艾士刚, 陈浩森, 方岱宁. 锂离子电池内部力学与温度参量在位表征方法[J]. 储能科学与技术, 2019, 8(6): 1062-1075.
FENG Xiaolong, YANG Le, ZHANG Mingliang, TAO Ran, HAN Yu, WEN Jiawei, WANG Panding, SONG Weili, AI Shigang, CHEN Haosen, FANG Daining. Failure mechanics inner lithium ion batteries: In-situ multi-field experimental methods[J]. Energy Storage Science and Technology, 2019, 8(6): 1062-1075.
[1] DUNN B, KAMATH H, TARASCON J M. Electrical energy storage for the grid:A battery of choices[J]. Science, 2011, 334(6058):928-935. [2] SCROSATI B, GARCHE J. Lithium batteries:Status, prospects and future[J]. Journal of Power Sources, 2010, 195(9):2419-2430. [3] ETACHERI V, MAROM R, ELAZARI R, et al. Challenges in the development of advanced Li-ion batteries:A review[J]. Energy & Environmental Science, 2011, 4(9):3243-3262. [4] LARCHER D, TARASCON J. Towards greener and more sustainable batteries for electrical energy storage[J]. Nature Chemistry, 2015, 7(1):19-29. [5] NITTA N, WU F, LEE J T, et al. Li-ion battery materials:Present and future[J]. Materials Today, 2015, 18(5):252-264. [6] TARASCON J M, ARMAND M. Issues and challenges facing rechargeable lithium batteries[J]. Nature, 2001, 414(6861):359-367. [7] MUKHOPADHYAY A, SHELDON B W. Deformation and stress in electrode materials for Li-ion batteries[J]. Progress in Materials Science, 2014, 63:58-116. [8] ZHAO K, CUI Y. Understanding the role of mechanics in energy materials:A perspective[J]. Extreme Mechanics Letters, 2016, 9:347-352. [9] MCDOWELL M T, LEE S W, NIX W D, et al. 25th Anniversary Article:Understanding the lithiation of silicon and other alloying anodes for lithium-ion batteries[J]. Advanced Materials, 2013, 25(36):4966-4985. [10] XU R, ZHAO K. Electrochemomechanics of electrodes in Li-ion batteries:A review[J]. Journal of Electrochemical Energy Conversion and Storage, 2016, 13(3):30803. [11] ZHANG S, ZHAO K, ZHU T, et al. Electrochemomechanical degradation of high-capacity battery electrode materials[J]. Progress in Materials Science, 2017, 89:479-521. [12] JIN Y, ZHU B, LU Z, et al. Challenges and recent progress in the development of Si anodes for lithium-ion battery[J]. Advanced Energy Materials, 2017, 7(23):1700715. [13] SZCZECH J R, JIN S. Nanostructured silicon for high capacity lithium battery anodes[J]. Energy & Environmental Science, 2011, 4(1):56-72. [14] PARK C, KIM J, KIM H, et al. Li-alloy based anode materials for Li secondary batteries[J]. Chemical Society Reviews, 2010, 39(8):3115. [15] HARRIS S J, TIMMONS A, BAKER D R, et al. Direct in situ measurements of Li transport in Li-ion battery negative electrodes[J]. Chemical Physics Letters, 2010, 485(4/5/6):265-274. [16] QI Y, HARRIS S J. In situ observation of strains during lithiation of a graphite electrode[J]. Journal of the Electrochemical Society, 2010, 157(6):A741-A747. [17] HARRIS S J, LU P. Effects of inhomogeneities-nanoscale to mesoscale -on the durability of Li-ion batteries[J]. The Journal of Physical Chemistry C, 2013, 117(13):6481-6492. [18] KEHRWALD D, SHEARING P R, BRANDON N P, et al. Local tortuosity inhomogeneities in a lithium battery composite electrode[J]. Journal of the Electrochemical Society, 2011, 158(12):A1393-A1399. [19] MAIRE P, EVANS A, KAISER H, et al. Colorimetric determination of lithium content in electrodes of lithium-ion batteries[J]. Journal of the Electrochemical Society, 2008, 155(11):A862-A865. [20] GHANNOUM A, NORRIS R C, IYER K, et al.Optical characterization of commercial lithiated graphite battery electrodes and in situ fiber optic evanescent wave spectroscopy[J]. ACS Applied Materials & Interfaces, 2016, 8(29):18763-18769. [21] MAIRE P, KAISER H, SCHEIFELE W, et al. Colorimetric determination of lithium-ion mobility in graphite composite electrodes[J]. Journal of Electroanalytical Chemistry, 2010, 644(2):127-131. [22] YANG L, CHEN H, JIANG H, et al. Failure mechanisms of 2D silicon film anodes:in situ observations and simulations on crack evolution[J]. Chemical Communications, 2018, 54(32):3997-4000. [23] ZHANG X, SONG W, LIU Z, et al. Geometric design of micron-sized crystalline silicon anodes through in situ observation of deformation and fracture behaviors[J]. Journal of Materials Chemistry A, 2017, 5(25):12793-12802. [24] YANG L, CHEN H, SONG W, et al. In situ optical observations and simulations on defect induced failure of silicon island anodes[J]. Journal of Power Sources, 2018, 405:101-105. [25] YANG L, CHEN H, SONG W, et al. Effect of defects on diffusion behaviors of lithium-ion battery electrodes:in situ optical observation and simulation[J]. ACS Applied Materials & Interfaces, 2018, 10(50):43623-43630. [26] LI D, WANG Y, HU J, et al. In situ measurement of mechanical property and stress evolution in a composite silicon electrode[J]. Journal of Power Sources, 2017, 366:80-85. [27] XIE H, ZHANG Q, SONG H, et al. Modeling and in situ characterization of lithiation-induced stress in electrodes during the coupled mechano-electro-chemical process[J]. Journal of Power Sources, 2017, 342:896-903. [28] XIE H, QIU W, SONG H, et al. In situ measurement of the deformation and elastic modulus evolution in Si composite electrodes during electrochemical lithiation and delithiation[J]. Journal of the Electrochemical Society, 2016, 163(13):A2685-A2690. [29] PHARR M, SUO Z, VLASSAK J J. Measurements of the fracture energy of lithiated silicon electrodes of Li-ion batteries[J]. Nano Letters, 2013, 13(11):5570-5577. [30] PHARR M, CHOI Y S, LEE D, et al. Measurements of stress and fracture in germanium electrodes of lithium-ion batteries during electrochemical lithiation and delithiation[J]. Journal of Power Sources, 2016, 304:164-169. [31] KHOSROWNEJAD S M, CURTIN W A. Crack growth and fracture toughness of amorphous Li-Si anodes:Mechanisms and role of charging/discharging studied by atomistic simulations[J]. Journal of the Mechanics and Physics of Solids, 2017, 107:542-559. [32] NADIMPALLI S P V, TRIPURANENI R, SETHURAMAN V A. Real-time stress measurements in germanium thin film electrodes during electrochemical lithiation/delithiation cycling[J]. Journal of the Electrochemical Society, 2015, 162(14):A2840-A2846. [33] SHETH J, KARAN N K, ABRAHAM D P, et al. In situ stress evolution in Li1+xMn2O4 thin films during electrochemical cycling in Li-Ion cells[J]. Journal of the Electrochemical Society, 2016, 163(13):A2524-A2530. [34] SETHURAMAN V A, CHON M J, SHIMSHAK M, et al. In situ measurement of biaxial modulus of Si anode for Li-ion batteries[J]. Electrochemistry Communications, 2010, 12(11):1614-1617. [35] SETHURAMAN V A, CHON M J, SHIMSHAK M, et al. In situ measurements of stress evolution in silicon thin films during electrochemical lithiation and delithiation[J]. Journal of Power Sources, 2010, 195(15):5062-5066. [36] BOWER A F, GUDURU P R, SETHURAMAN V A. A finite strain model of stress, diffusion, plastic flow, and electrochemical reactions in a lithium-ion half-cell[J]. Journal of the Mechanics and Physics of Solids, 2011, 59(4):804-828. [37] NADIMPALLI S P V, SETHURAMAN V A, BUCCI G, et al. On plastic deformation and fracture in Si films during electrochemical lithiation/delithiation cycling[J]. Journal of the Electrochemical Society, 2013, 160(10):A1885-A1893. [38] NADIMPALLI S P V, SETHURAMAN V A, ABRAHAM D P, et al. Stress evolution in lithium-ion composite electrodes during electrochemical cycling and resulting internal pressures on the cell casing[J]. Journal of the Electrochemical Society, 2015, 162(14):A2656-A2663. [39] SETHURAMAN V A, NGUYEN A, CHON M J, et al. Stress evolution in composite silicon electrodes during lithiation/delithiation[J]. Journal of the Electrochemical Society, 2013, 160(4):A739-A746. [40] CHEN J, THAPA A K, BERFIELD T A. In-situ characterization of strain in lithium battery working electrodes[J]. Journal of Power Sources, 2014, 271:406-413. [41] SETHURAMAN V A, VAN WINKLE N, ABRAHAM D P, et al. Realtime stress measurements in lithium-ion battery negative-electrodes[J]. Journal of Power Sources, 2012, 206:334-342. [42] MUKHOPADHYAY A, TOKRANOV A, XIAO X, et al. Stress development due to surface processes in graphite electrodes for Li-ion batteries:A first report[J]. Electrochimica Acta, 2012, 66:28-37. [43] ZHANG J, ZHANG J, BAO T, et al. Electrochemical and stress characteristics of SiO/Cu/expanded graphite composite as anodes for lithium ion batteries[J]. Journal of Power Sources, 2017, 348:16-20. [44] COHEN Y, AURBACH D. The use of a special work station for in situ measurements of highly reactive electrochemical systems by atomic force and scanning tunneling microscopes[J]. Review of Scientific Instruments, 1999, 70(12):4668-4675. [45] MORIGAKI K, OHTA A. Analysis of the surface of lithium in organic electrolyte by atomic force microscopy, Fourier transform infrared spectroscopy and scanning auger electron microscopy[J]. Journal of Power Sources, 1998, 76(2):159-166. [46] WANG S, LIU Q, ZHAO C, et al. Advances in understanding materials for rechargeable lithium batteries by atomic force microscopy[J]. Energy & Environmental Materials, 2018, 1(1):28-40. [47] BEAULIEU L Y, EBERMAN K W, TURNER R L, et al. Colossal reversible volume changes in lithium alloys[J]. Electrochemical and Solid-State Letters, 2001, 4(9):A137. [48] CAMPANA F P, KÖTZ R, VETTER J, et al. In situ atomic force microscopy study of dimensional changes during Li+ ion intercalation/de-intercalation in highly oriented pyrolytic graphite[J]. Electrochemistry Communications, 2005, 7(1):107-112. [49] TOKRANOV A, SHELDON B W, LI C, et al. In situ atomic force microscopy study of initial solid electrolyte interphase formation on silicon electrodes for Li-ion batteries[J]. ACS Applied Materials & Interfaces, 2014, 6(9):6672-6686. [50] BEAULIEU L Y, HATCHARD T D, BONAKDARPOUR A, et al. Reaction of Li with alloy thin films studied by in situ AFM[J]. Journal of the Electrochemical Society, 2003, 150(11):A1457. [51] KOLTYPIN M, COHEN Y, COHEN Y S, et al. The study of lithium insertion-deinsertion processes into composite graphite electrodes by in situ atomic force microscopy (AFM)[J]. Electrochemistry Communications, 2002, 4(1):17-23. [52] PARK J, KALNAUS S, HAN S, et al. In situ atomic force microscopy studies on lithium (de)intercalation-induced morphology changes in LixCoO2 micro-machined thin film electrodes[J]. Journal of Power Sources, 2013, 222:417-425. [53] HUANG S, CHEONG L, WANG S, et al. In-situ study of surface structure evolution of silicon anodes by electrochemical atomic force microscopy[J]. Applied Surface Science, 2018, 452:67-74. [54] MCALLISTER Q P, STRAWHECKER K E, BECKER C R, et al. In situ atomic force microscopy nanoindentation of lithiated silicon nanopillars for lithium ion batteries[J]. Journal of Power Sources, 2014, 257:380-387. [55] BEAULIEU L Y, CUMYN V K, EBERMAN K W, et al. A system for performing simultaneous in situ atomic force microscopy/optical microscopy measurements on electrode materials for lithium-ion batteries[J]. Review of Scientific Instruments, 2001, 72(8):3313-3319. [56] BECKER C R, STRAWHECKER K E, MCALLISTER Q P, et al. In situ atomic force microscopy of lithiation and delithiation of silicon nanostructures for lithium ion batteries[J]. ACS Nano, 2013, 7(10):9173-9182. [57] HIRASAWA K A. In situ electrochemical atomic force microscope study on graphite electrodes[J]. Journal of the Electrochemical Society, 1997, 144(4):L81. [58] BALKE N, JESSE S, MOROZOVSKA A N, et al. Nanoscale mapping of ion diffusion in a lithium-ion battery cathode[J]. Nature Nanotechnology, 2010, 5(10):749-754. [59] KUMAR R, TOKRANOV A, SHELDON B W, et al. In situ and operando investigations of failure mechanisms of the solid electrolyte interphase on silicon electrodes[J]. ACS Energy Letters, 2016, 1(4):689-697. [60] CHAN C K, PENG H, LIU G, et al. High-performance lithium battery anodes using silicon nanowires[J]. Nature Nanotechnology, 2008, 3(1):31-35. [61] TEKI R, DATTA M K, KRISHNAN R, et al. Nanostructured silicon anodes for lithium ion rechargeable batteries[J]. Small, 2009, 5(20):2236-2242. [62] PIKUL J H, ZHANG H G, CHO J, et al. High-power lithium ion microbatteries from interdigitated three-dimensional bicontinuous nanoporous electrodes[J]. Nature Communications, 2013, 4:1732. [63] WU F, YAO N. Advances in sealed liquid cells for in-situ TEM electrochemial investigation of lithium-ion battery[J]. Nano Energy, 2015, 11:196-210. [64] SHIM J, IM J, KANG H, et al. Implications of cation-disordered grain boundaries on the electrochemical performance of the LiNi0.5Co0.2Mn0.3O2 cathode material for lithium ion batteries[J]. Journal of Materials Chemistry A, 2018, 6(33):16111-16120. [65] LUO F, LIU B, ZHENG J, et al. Review-nano-silicon/carbon composite anode materials towards practical application for next generation Li-ion batteries[J]. Journal of the Electrochemical Society, 2015, 162(14):A2509-A2528. [66] KIM J S, PFLEGING W, KOHLER R, et al. Three-dimensional silicon/carbon core-shell electrode as an anode material for lithium-ion batteries[J]. Journal of Power Sources, 2015, 279:13-20. [67] YAMAMOTO K, MINATO T, MORI S, et al. Improved cyclic performance of lithium-ion batteries:an investigation of cathode/electrolyte interface via in situ total-reflection fluorescence X-ray absorption spectroscopy[J]. Journal of Physical Chemistry C, 2014, 118(18):9538-9543. [68] SUGIMOTO T, KIKUTA M, ISHIKO E, et al. Ionic liquid electrolytes compatible with graphitized carbon negative without additive and their effects on interfacial properties[J]. Journal of Power Sources, 2008, 183(1):436-440. [69] GELB J, FINEGAN D P, BRETT D J L, et al. Multi-scale 3D investigations of a commercial 18650 Li-ion battery with correlative electron- and X-ray microscopy[J]. Journal of Power Sources, 2017, 357:77-86. [70] HONBO H, TAKEI K, ISHII Y, et al. Electrochemical properties and Li deposition morphologies of surface modified graphite after grinding[J]. Journal of Power Sources, 2009, 189(1SI):337-343. [71] SAUERTEIG D, IVANOV S, REINSHAGEN H, et al. Reversible and irreversible dilation of lithium-ion battery electrodes investigated by in-situ dilatometry[J]. Journal of Power Sources, 2017, 342:939-946. [72] CHIKKANNANAVAR S B, BERNARDI D M, LIU L. A review of blended cathode materials for use in Li-ion batteries[J]. Journal of Power Sources, 2014, 248:91-100. [73] SHI H, LIU X, WU R, et al. In situ SEM observation of structured Si/C anodes reactions in an ionic-liquid-based lithium-ion battery[J]. Applied Sciences, 2019, 9(5):956. [74] ZHU J, ZHANG X, LUO H, et al. Investigation of the deformation mechanisms of lithium-ion battery components using in situ micro tests[J]. Applied Energy, 2018, 224:251-266. [75] RONG G, ZHANG X, ZHAO W, et al. Liquid-phase electrochemical scanning electron microscopy for in situ investigation of lithium dendrite growth and dissolution[J]. Advanced Materials, 2017, 29(13):1606187. [76] ZHU Y, GAO T, FAN X, et al. Electrochemical techniques for intercalation electrode materials in rechargeable batteries[J]. Accounts of Chemical Research, 2017, 50(4):1022-1031. [77] LI Y H, CHENG X P, ZHAO K, et al. Recent advance into understanding electro-chemo-mechanical behavior of lithium ion batteries by electron microscopy[J]. Materials Today Nano, 2019, 7:100040. [78] ZHANG J-N, LI Q H, OUYANG C Y, et al. Trace doping of multiple elements enables stable battery cycling of LiCoO2 at 4.6 V[J]. Nature Energy, 2019, 4:594-603. [79] DAEMI S R, LU X, SYKES D, et al. 4D visualisation of in situ nano-compression of Li-ion cathode materials to mimic early stage calendering[J]. Materials Horizons, 2019, 6(3):612-617. [80] TSAI P, WEN B, WOLFMAN M, et al. Single-particle measurements of electrochemical kinetics in NMC and NCA cathodes for Li-ion batteries[J]. Energy & Environmental Science, 2018, 11(4):860-871. [81] TAIWO O O, PAZ-GARCÍA J M, HALL S A, et al. Microstructural degradation of silicon electrodes during lithiation observed via operando X-ray tomographic imaging[J]. Journal of Power Sources, 2017, 342:904-912. [82] CARTER R, KLEIN E J, ATKINSON III R W, et al. Mechanical collapse as primary degradation mode in mandrel-free 18650 Li-ion cells operated at 0℃[J]. Journal of Power Sources, 2019, 437:226820. [83] VILLEVIEILLE C, EBNER M, GÓMEZ-CÁMER J L, et al. Influence of conversion material morphology on electrochemistry studied with operando X-ray tomography and diffraction[J]. Advanced Materials, 2015, 27(10):1676-1681. [84] CHEN-WIEGART Y K, SHEARING P, YUAN Q, et al. 3D morphological evolution of Li-ion battery negative electrode LiVO2 during oxidation using X-ray nano-tomography[J]. Electrochemistry Communications, 2012, 21:58-61. [85] RAHE C, KELLY S T, RAD M N, et al. Nanoscale X-ray imaging of ageing in automotive lithium ion battery cells[J]. Journal of Power Sources, 2019, 433:126631. [86] DONG K, MARKÖTTER H, SUN F, et al. In situ and operando tracking of microstructure and volume evolution of silicon electrodes by using synchrotron X-ray imaging[J]. ChemSusChem, 2018, 12(1):261-269. [87] EBNER M, MARONE F, STAMPANONI M, et al. Visualization and quantification of electrochemical and mechanical degradation in Li ion batteries[J]. Science, 2013, 342(6159):716-720. [88] SHEARING P R, HOWARD L E, JØRGENSEN P S, et al. Characterization of the 3-dimensional microstructure of a graphite negative electrode from a Li-ion battery[J]. Electrochemistry Communications, 2010, 12(3):374-377. [89] EBNER M, GELDMACHER F, MARONE F, et al. X-Ray tomography of porous, transition metal oxide based lithium ion battery electrodes[J]. Advanced Energy Materials, 2013, 3(7):845-850. [90] COOPER S J, EASTWOOD D S, GELB J, et al. Image based modelling of microstructural heterogeneity in LiFePO4 electrodes for Li-ion batteries[J]. Journal of Power Sources, 2014, 247:1033-1039. [91] PIETSCH P, WESTHOFF D, FEINAUER J, et al. Quantifying microstructural dynamics and electrochemical activity of graphite and silicon-graphite lithium ion battery anodes[J]. Nature Communications, 2016, 7(1):12909. [92] BOND T, ZHOU J, CUTLER J. Electrode stack geometry changes during gas evolution in pouch-cell-type lithium ion batteries[J]. Journal of the Electrochemical Society, 2017, 164(1):A6158-A6162. [93] CHEN C, WEI Y, ZHAO Z, et al. Investigation of the swelling failure of lithium-ion battery packs at low temperatures using 2D/3D X-ray computed tomography[J]. Electrochimica Acta, 2019, 305:65-71. [94] PFRANG A, KERSYS A, KRISTON A, et al. Long-term cycling induced jelly roll deformation in commercial 18650 cells[J]. Journal of Power Sources, 2018, 392:168-175. [95] FINEGAN D P, SCHEEL M, ROBINSON J B, et al. In-operando highspeed tomography of lithium-ion batteries during thermal runaway[J]. Nature Communications, 2015, 6(1), doi:10.1038/ncomms7924. [96] FINEGAN D P, SCHEEL M, ROBINSON J B, et al. Investigating lithium-ion battery materials during overcharge-induced thermal runaway:An operando and multi-scale X-ray CT study[J]. Physical Chemistry Chemical Physics, 2016, 18(45):30912-30919. [97] ALESSIO K O, VOSS M, FLORES E M M, et al. Infrared thermal imaging combined with paper microzone plates and natural reagent extracts for simple, fast, and green enthalpimetric analysis[J]. Talanta, 2019, 204:266-271. [98] DAINO M M, LU Z, LAMANNA J M, et al. Through-plane water transport visualization in a PEMFC by visible and infrared imaging[J]. Electrochemical and Solid-State Letters, 2011, 14(6):B51. [99] MÖLLMANN K, VOLLMER M. Infrared thermal imaging as a tool in university physics education[J]. European Journal of Physics, 2007, 28(3):S37-S50. [100] ROBINSON J, SHEARING P, BRETT D. Thermal imaging of electrochemical power systems:A review[J]. Journal of Imaging, 2016, 2(1):2. [101] CUMMING D J, ELDER R H. Thermal imaging of solid oxide cells operating under electrolysis conditions[J]. Journal of Power Sources, 2015, 280:387-392. [102] LI H, HRNJAK P. Quantification of liquid refrigerant distribution in parallel flow microchannel heat exchanger using infrared thermography[J]. Applied Thermal Engineering, 2015, 78:410-418. [103] FINEGAN D P, TJADEN B, M. M. HEENAN T, et al. Tracking internal temperature and structural dynamics during nail penetration of lithium-ion cells[J]. Journal of the Electrochemical Society, 2017, 164(13):A3285-A3291. [104] WALDMANN T, BISLE G, HOGG B, et al. Influence of cell design on temperatures and temperature gradients in lithium-ion cells:An in operando study[J]. Journal of the Electrochemical Society, 2015, 162(6):A921-A927. [105] FORGEZ C, VINH DO D, FRIEDRICH G, et al. Thermal modeling of a cylindrical LiFePO4/graphite lithium-ion battery[J]. Journal of Power Sources, 2010, 195(9):2961-2968. [106] ROBINSON J B, BROWN L D, JERVIS R, et al. A novel hightemperature furnace for combined in situ synchrotron X-ray diffraction and infrared thermal imaging to investigate the effects of thermal gradients upon the structure of ceramic materials[J]. Journal of Synchrotron Radiation, 2014, 21(5):1134-1139. [107] ROBINSON J B, DARR J A, EASTWOOD D S, et al. Nonuniform temperature distribution in Li-ion batteries during discharge-A combined thermal imaging, X-ray micro-tomography and electrochemical impedance approach[J]. Journal of Power Sources, 2014, 252:51-57. [108] DUAN J, WEI B, YANG R, et al. Screening defective lithium ion batteries of 0 V open-circuit voltage by a high current charge process in combination with in situ infrared thermal imaging technology[J]. Journal of Solid State Electrochemistry, 2012, 16(2):597-602. [109] GOUTAM S, TIMMERMANS J, OMAR N, et al. Comparative study of surface temperature behavior of commercial Li-ion pouch cells of different chemistries and capacities by infrared thermography[J]. Energies, 2015, 8(8):8175-8192. [110] HEUBNER C, LÄMMEL C, JUNKER N, et al. Microscopic inoperando thermography at the cross section of a single lithium ion battery stack[J]. Electrochemistry Communications, 2014, 48:130-133. [111] HUNT I A, PATEL Y, SZCZYGIELSKI M, et al. Lithium sulfur battery nail penetration test under load[J]. Journal of Energy Storage, 2015, 2:25-29. [112] YI J, KIM U S, SHIN C B, et al. Three-dimensional thermal modeling of a lithium-ion battery considering the combined effects of the electrical and thermal contact resistances between current collecting tab and lead wire[J]. Journal of the Electrochemical Society, 2013, 160(3):A437-A443. [113] ROBINSON J B, ENGEBRETSEN E, FINEGAN D P, et al. Detection of internal defects in lithium-ion batteries using lockin thermography[J]. ECS Electrochemistry Letters, 2015, 4(9):A106-A109. [114] CHALISE D, SHAH K, HALAMA T, et al. An experimentally validated method for temperature prediction during cyclic operation of a Li-ion cell[J]. International Journal of Heat and Mass Transfer, 2017, 112:89-96. [115] DRAKE S J, MARTIN M, WETZ D A, et al. Heat generation rate measurement in a Li-ion cell at large C-rates through temperature and heat flux measurements[J]. Journal of Power Sources, 2015, 285:266-273. [116] LI Z, ZHANG J, WU B, et al. Examining temporal and spatial variations of internal temperature in large-format laminated battery with embedded thermocouples[J]. Journal of Power Sources, 2013,241:536-553. [117] MARTINY N, RHEINFELD A, GEDER J, et al. Development of an all Kapton-based thin-film thermocouple matrix for in situ temperature measurement in a lithium ion pouch cell[J]. IEEE Sensors Journal, 2014, 14(10):3377-3384. [118] SPINNER N S, HINNANT K M, MAZURICK R, et al. Novel 18650 lithium-ion battery surrogate cell design with anisotropic thermophysical properties for studying failure events[J]. Journal of Power Sources, 2016, 312:1-11. [119] ZHANG G, CAO L, GE S, et al. In situ measurement of radial temperature distributions in cylindrical Li-ion cells[J]. Journal of the Electrochemical Society, 2014, 161(10):A1499-A1507. [120] MUTYALA M S K, ZHAO J, LI J, et al. In-situ temperature measurement in lithium ion battery by transferable flexible thin film thermocouples[J]. Journal of Power Sources, 2014, 260:43-49. [121] MARTINY N, MÜHLBAUER T, STEINHORST S, et al. Digital data transmission system with capacitive coupling for in-situ temperature sensing in lithium ion cells[J]. Journal of Energy Storage, 2015, 4:128-134. [122] LEE C, LEE S, TANG M, et al. In situ monitoring of temperature inside lithium-ion batteries by flexible micro temperature sensors[J]. Sensors, 2011, 11(10):9942-9950. [123] LEE C, LEE S, HUNG Y, et al. Integrated microsensor for real-time microscopic monitoring of local temperature, voltage and current inside lithium ion battery[J]. Sensors and Actuators A:Physical, 2017, 253:59-68. [124] LEE C, PENG H, LEE S, et al. A flexible three-in-one microsensor for real-time monitoring of internal temperature, voltage and current of lithium batteries[J]. Sensors, 2015, 15(5):11485-11498. [125] LEE C, WENG F, HUANG Y, et al. Real-time monitoring of internal temperature and voltage of high-temperature fuel cell stack[J]. Electrochimica Acta, 2015, 161:413-419. [126] ZHANG G, CAO L, GE S, et al. Reaction temperature sensing (RTS)-based control for Li-ion battery safety[J]. Scientific Reports, 2015, 5(1), doi:10.1038/srep18237. [127] DAVID N A, WILD P M, HU J, et al. In-fibre Bragg grating sensors for distributed temperature measurement in a polymer electrolyte membrane fuel cell[J]. Journal of Power Sources, 2009, 192(2):376-380. [128] SOMMER L W, RAGHAVAN A, KIESEL P, et al. Monitoring of intercalation stages in lithium-ion cells over charge-discharge cycles with fiber optic sensors[J]. Journal of the Electrochemical Society, 2015, 162(14):A2664-A2669. [129] BAE C, MANANDHAR A, KIESEL P, et al. Monitoring the strain evolution of lithium-ion battery electrodes using an optical fiber Bragg grating sensor[J]. Energy Technology, 2016, 4(7):851-855. [130] FORTIER A, TSAO M, WILLIARD N, et al. Preliminary study on integration of fiber optic Bragg grating sensors in Li-ion batteries and in situ strain and temperature monitoring of battery cells[J]. Energies, 2017, 10(7):838. [131] HONG X, LI N, KONG Q, et al. Local cell temperature monitoring for aluminum shell lithium-ion battery based on electrical resistance tomography[J]. Measurement, 2016, 86:227-238. [132] NOVAIS S, NASCIMENTO M, GRANDE L, et al. Internal and external temperature monitoring of a Li-ion battery with fiber Bragg grating sensors[J]. Sensors, 2016, 16(9):1394. [133] GANGULI A, SAHA B, RAGHAVAN A, et al. Embedded fiber-optic sensing for accurate internal monitoring of cell state in advanced battery management systems part 2:Internal cell signals and utility for state estimation[J]. Journal of Power Sources, 2017, 341:474-482. [134] RAGHAVAN A, KIESEL P, SOMMER L W, et al. Embedded fiber-optic sensing for accurate internal monitoring of cell state in advanced battery management systems part 1:Cell embedding method and performance[J]. Journal of Power Sources, 2017, 341:466-473.ble battery cycling of LiCoO2 at 4.6 V[J]. Nature Materials, 2019. [84] Daemi S R, Lu X, Sykes D, et al. 4D visualisation of in situ nano-compression of Li-ion cathode materials to mimic early stage calendering[J]. Materials Horizons, 2019, 6(3):612-617. [85] Tsai P, Wen B, Wolfman M, et al. Single-particle measurements of electrochemical kinetics in NMC and NCA cathodes for Li-ion batteries[J]. Energy & Environmental Science, 2018, 11(4):860-871. [86] Taiwo O O, Paz-García J M, Hall S A, et al. Microstructural degradation of silicon electrodes during lithiation observed via operando X-ray tomographic imaging[J]. Journal of Power Sources, 2017, 342:904-912. [87] Carter R, Klein E J, Atkinson Iii R W, et al. Mechanical collapse as primary degradation mode in mandrel-free 18650 Li-ion cells operated at 0° C[J]. Journal of Power Sources, 2019, 437:226820. [88] Villevieille C, Ebner M, Gómez-Cámer J L, et al. Influence of Conversion Material Morphology on Electrochemistry Studied with Operando X-Ray Tomography and Diffraction[J]. Advanced Materials, 2015, 27(10):1676-1681. [89] Chen-Wiegart Y K, Shearing P, Yuan Q, et al. 3D morphological evolution of Li-ion battery negative electrode LiVO2 during oxidation using X-ray nano-tomography[J]. Electrochemistry Communications, 2012, 21:58-61. [90] Rahe C, Kelly S T, Rad M N, et al. Nanoscale X-ray imaging of ageing in automotive lithium ion battery cells[J]. Journal of Power Sources, 2019, 433:126631. [91] Dong K, Markötter H, Sun F, et al. In situ and Operando Tracking of Microstructure and Volume Evolution of Silicon Electrodes by using Synchrotron X-ray Imaging[J]. ChemSusChem, 2018, 12(1):261-269. [92] Ebner M, Marone F, Stampanoni M, et al. Visualization and quantification of electrochemical and mechanical degradation in Li ion batteries[J]. Science, 2013, 342(6159):716-720. [93] Shearing P R, Howard L E, Jørgensen P S, et al. Characterization of the 3-dimensional microstructure of a graphite negative electrode from a Li-ion battery[J]. Electrochemistry Communications, 2010, 12(3):374-377. [94] Ebner M, Geldmacher F, Marone F, et al. X-Ray Tomography of Porous, Transition Metal Oxide Based Lithium Ion Battery Electrodes[J]. Advanced Energy Materials, 2013, 3(7):845-850. [95] Cooper S J, Eastwood D S, Gelb J, et al. Image based modelling of microstructural heterogeneity in LiFePO 4 electrodes for Li-ion batteries[J]. Journal of Power Sources, 2014, 247:1033-1039. [96] Pietsch P, Westhoff D, Feinauer J, et al. Quantifying microstructural dynamics and electrochemical activity of graphite and silicon-graphite lithium ion battery anodes[J]. Nature Communications, 2016, 7(1). [97] Bond T, Zhou J, Cutler J. Electrode Stack Geometry Changes during Gas Evolution in Pouch-Cell-Type Lithium Ion Batteries[J]. Journal of The Electrochemical Society, 2017, 164(1):A6158-A6162. [98] Chen C, Wei Y, Zhao Z, et al. Investigation of the swelling failure of lithium-ion battery packs at low temperatures using 2D/3D X-ray computed tomography[J]. Electrochimica Acta, 2019, 305:65-71. [99] Pfrang A, Kersys A, Kriston A, et al. Long-term cycling induced jelly roll deformation in commercial 18650 cells[J]. Journal of Power Sources, 2018, 392:168-175. [100] Finegan D P, Scheel M, Robinson J B, et al. In-operando high-speed tomography of lithium-ion batteries during thermal runaway[J]. Nature Communications, 2015, 6(1). [101] Finegan D P, Scheel M, Robinson J B, et al. Investigating lithium-ion battery materials during overcharge-induced thermal runaway:an operando and multi-scale X-ray CT study[J]. Phys Chem Chem Phys, 2016, 18(45):30912-30919. [102] Alessio K O, Voss M, Flores E M M, et al. Infrared thermal imaging combined with paper microzone plates and natural reagent extracts for simple, fast, and green enthalpimetric analysis[J]. Talanta, 2019, 204:266-271. [103] Daino M M, Lu Z, Lamanna J M, et al. Through-Plane Water Transport Visualization in a PEMFC by Visible and Infrared Imaging[J]. Electrochemical and Solid-State Letters, 2011, 14(6):B51. [104] Möllmann K, Vollmer M. Infrared thermal imaging as a tool in university physics education[J]. European Journal of Physics, 2007, 28(3):S37-S50. [105] Robinson J, Shearing P, Brett D. Thermal Imaging of Electrochemical Power Systems:A Review[J]. Journal of Imaging, 2016, 2(1):2. [106] Cumming D J, Elder R H. Thermal imaging of solid oxide cells operating under electrolysis conditions[J]. Journal of Power Sources, 2015, 280:387-392. [107] Li H, Hrnjak P. Quantification of liquid refrigerant distribution in parallel flow microchannel heat exchanger using infrared thermography[J]. Applied Thermal Engineering, 2015, 78:410-418. [108] Finegan D P, Tjaden B, M. M. Heenan T, et al. Tracking Internal Temperature and Structural Dynamics during Nail Penetration of Lithium-Ion Cells[J]. Journal of The Electrochemical Society, 2017, 164(13):A3285-A3291. [109] Waldmann T, Bisle G, Hogg B, et al. Influence of Cell Design on Temperatures and Temperature Gradients in Lithium-Ion Cells:An In Operando Study[J]. Journal of The Electrochemical Society, 2015, 162(6):A921-A927. [110] Forgez C, Vinh Do D, Friedrich G, et al. Thermal modeling of a cylindrical LiFePO4/graphite lithium-ion battery[J]. Journal of Power Sources, 2010, 195(9):2961-2968. [111] Robinson J B, Brown L D, Jervis R, et al. A novel high-temperature furnace for combinedin situ synchrotron X-ray diffraction and infrared thermal imaging to investigate the effects of thermal gradients upon the structure of ceramic materials[J]. Journal of Synchrotron Radiation, 2014, 21(5):1134-1139. [112] Robinson J B, Darr J A, Eastwood D S, et al. Non-uniform temperature distribution in Li-ion batteries during discharge-A combined thermal imaging, X-ray micro-tomography and electrochemical impedance approach[J]. Journal of Power Sources, 2014, 252:51-57. [113] Duan J, Wei B, Yang R, et al. Screening defective lithium ion batteries of 0 V open-circuit voltage by a high current charge process in combination with in situ infrared thermal imaging technology[J]. Journal of Solid State Electrochemistry, 2012, 16(2):597-602. [114] Goutam S, Timmermans J, Omar N, et al. Comparative Study of Surface Temperature Behavior of Commercial Li-Ion Pouch Cells of Different Chemistries and Capacities by Infrared Thermography[J]. Energies, 2015, 8(8):8175-8192. [115] Finegan D P, Scheel M, Robinson J B, et al. In-operando high-speed tomography of lithium-ion batteries during thermal runaway[J]. Nature Communications, 2015, 6(1). [116] Heubner C, Lämmel C, Junker N, et al. Microscopic in-operando thermography at the cross section of a single lithium ion battery stack[J]. Electrochemistry Communications, 2014, 48:130-133. [117] Hunt I A, Patel Y, Szczygielski M, et al. Lithium sulfur battery nail penetration test under load[J]. Journal of Energy Storage, 2015, 2:25-29. [118] Yi J, Kim U S, Shin C B, et al. Three-Dimensional Thermal Modeling of a Lithium-Ion Battery Considering the Combined Effects of the Electrical and Thermal Contact Resistances between Current Collecting Tab and Lead Wire[J]. Journal of The Electrochemical Society, 2013, 160(3):A437-A443. [119] Robinson J B, Engebretsen E, Finegan D P, et al. Detection of Internal Defects in Lithium-Ion Batteries Using Lock-in Thermography[J]. ECS Electrochemistry Letters, 2015, 4(9):A106-A109. [120] Chalise D, Shah K, Halama T, et al. An experimentally validated method for temperature prediction during cyclic operation of a Li-ion cell[J]. International Journal of Heat and Mass Transfer, 2017, 112:89-96. [121] Drake S J, Martin M, Wetz D A, et al. Heat generation rate measurement in a Li-ion cell at large C-rates through temperature and heat flux measurements[J]. Journal of Power Sources, 2015, 285:266-273. [122] Li Z, Zhang J, Wu B, et al. Examining temporal and spatial variations of internal temperature in large-format laminated battery with embedded thermocouples[J]. Journal of Power Sources, 2013, 241:536-553. [123] Martiny N, Rheinfeld A, Geder J, et al. Development of an All Kapton-Based Thin-Film Thermocouple Matrix for In Situ Temperature Measurement in a Lithium Ion Pouch Cell[J]. IEEE Sensors Journal, 2014, 14(10):3377-3384. [124] Spinner N S, Hinnant K M, Mazurick R, et al. Novel 18650 lithium-ion battery surrogate cell design with anisotropic thermophysical properties for studying failure events[J]. Journal of Power Sources, 2016, 312:1-11. [125] Zhang G, Cao L, Ge S, et al. In Situ Measurement of Radial Temperature Distributions in Cylindrical Li-Ion Cells[J]. Journal of The Electrochemical Society, 2014, 161(10):A1499-A1507. [126] Mutyala M S K, Zhao J, Li J, et al. In-situ temperature measurement in lithium ion battery by transferable flexible thin film thermocouples[J]. Journal of Power Sources, 2014, 260:43-49. [127] Martiny N, Mühlbauer T, Steinhorst S, et al. Digital data transmission system with capacitive coupling for in-situ temperature sensing in lithium ion cells[J]. Journal of Energy Storage, 2015, 4:128-134. [128] Lee C, Lee S, Tang M, et al. In Situ Monitoring of Temperature inside Lithium-Ion Batteries by Flexible Micro Temperature Sensors[J]. Sensors, 2011, 11(10):9942-9950. [129] Lee C, Lee S, Hung Y, et al. Integrated microsensor for real-time microscopic monitoring of local temperature, voltage and current inside lithium ion battery[J]. Sensors and Actuators A:Physical, 2017, 253:59-68. [130] Lee C, Peng H, Lee S, et al. A Flexible Three-in-One Microsensor for Real-Time Monitoring of Internal Temperature, Voltage and Current of Lithium Batteries[J]. Sensors, 2015, 15(5):11485-11498. [131] Lee C, Weng F, Huang Y, et al. Real-time Monitoring of Internal Temperature and Voltage of High-temperature Fuel Cell Stack[J]. Electrochimica Acta, 2015, 161:413-419. [132] Zhang G, Cao L, Ge S, et al. Reaction temperature sensing (RTS)-based control for Li-ion battery safety[J]. Scientific Reports, 2015, 5(1). [133] David N A, Wild P M, Hu J, et al. In-fibre Bragg grating sensors for distributed temperature measurement in a polymer electrolyte membrane fuel cell[J]. Journal of Power Sources, 2009, 192(2):376-380. [134] Sommer L W, Raghavan A, Kiesel P, et al. Monitoring of Intercalation Stages in Lithium-Ion Cells over Charge-Discharge Cycles with Fiber Optic Sensors[J]. Journal of The Electrochemical Society, 2015, 162(14):A2664-A2669. [135] Bae C, Manandhar A, Kiesel P, et al. Monitoring the Strain Evolution of Lithium-Ion Battery Electrodes using an Optical Fiber Bragg Grating Sensor[J]. Energy Technology, 2016, 4(7):851-855. [136] Fortier A, Tsao M, Williard N, et al. Preliminary Study on Integration of Fiber Optic Bragg Grating Sensors in Li-Ion Batteries and In Situ Strain and Temperature Monitoring of Battery Cells[J]. Energies, 2017, 10(7):838. [137] Hong X, Li N, Kong Q, et al. Local cell temperature monitoring for aluminum shell lithium-ion battery based on electrical resistance tomography[J]. Measurement, 2016, 86:227-238. [138] Novais S, Nascimento M, Grande L, et al. Internal and External Temperature Monitoring of a Li-Ion Battery with Fiber Bragg Grating Sensors[J]. Sensors, 2016, 16(9):1394. [139] Fortier A, Tsao M, Williard N, et al. Preliminary Study on Integration of Fiber Optic Bragg Grating Sensors in Li-Ion Batteries and In Situ Strain and Temperature Monitoring of Battery Cells[J]. Energies, 2017, 10(7):838. [140] Ganguli A, Saha B, Raghavan A, et al. Embedded fiber-optic sensing for accurate internal monitoring of cell state in advanced battery management systems part 2:Internal cell signals and utility for state estimation[J]. Journal of Power Sources, 2017, 341:474-482. [141] Raghavan A, Kiesel P, Sommer L W, et al. Embedded fiber-optic sensing for accurate internal monitoring of cell state in advanced battery management systems part 1:Cell embedding method and performance[J]. Journal of Power Sources, 2017, 341:466-473. |
[1] | 李海涛, 孔令丽, 张欣, 余传军, 王纪威, 徐琳. N/P设计对高镍NCM/Gr电芯性能的影响[J]. 储能科学与技术, 2022, 11(7): 2040-2045. |
[2] | 刘显茜, 孙安梁, 田川. 基于仿生翅脉流道冷板的锂离子电池组液冷散热[J]. 储能科学与技术, 2022, 11(7): 2266-2273. |
[3] | 陈龙, 夏权, 任羿, 曹高萍, 邱景义, 张浩. 多物理场耦合下锂离子电池组可靠性研究现状与展望[J]. 储能科学与技术, 2022, 11(7): 2316-2323. |
[4] | 易顺民, 谢林柏, 彭力. 基于VF-DW-DFN的锂离子电池剩余寿命预测[J]. 储能科学与技术, 2022, 11(7): 2305-2315. |
[5] | 祝庆伟, 俞小莉, 吴启超, 徐一丹, 陈芬放, 黄瑞. 高能量密度锂离子电池老化半经验模型[J]. 储能科学与技术, 2022, 11(7): 2324-2331. |
[6] | 孔为, 金劲涛, 陆西坡, 孙洋. 对称蛇形流道锂离子电池冷却性能[J]. 储能科学与技术, 2022, 11(7): 2258-2265. |
[7] | 霍思达, 薛文东, 李新丽, 李勇. 基于CiteSpace知识图谱的锂电池复合电解质可视化分析[J]. 储能科学与技术, 2022, 11(7): 2103-2113. |
[8] | 邓健想, 赵金良, 黄成德. 高能量锂离子电池硅基负极黏结剂研究进展[J]. 储能科学与技术, 2022, 11(7): 2092-2102. |
[9] | 王宇作, 王瑨, 卢颖莉, 阮殿波. 孔结构对软碳负极储锂性能的影响[J]. 储能科学与技术, 2022, 11(7): 2023-2029. |
[10] | 丁奕, 杨艳, 陈锴, 曾涛, 黄云辉. 锂离子电池智能消防及其研究方法[J]. 储能科学与技术, 2022, 11(6): 1822-1833. |
[11] | 张言, 王海, 刘朝孟, 张德柳, 王佳东, 李建中, 高宣雯, 骆文彬. 锂离子电池富镍三元正极材料NCM的研究进展[J]. 储能科学与技术, 2022, 11(6): 1693-1705. |
[12] | 欧宇, 侯文会, 刘凯. 锂离子电池中的智能安全电解液研究进展[J]. 储能科学与技术, 2022, 11(6): 1772-1787. |
[13] | 韩俊伟, 肖菁, 陶莹, 孔德斌, 吕伟, 杨全红. 致密储能:基于石墨烯的方法学和应用实例[J]. 储能科学与技术, 2022, 11(6): 1865-1873. |
[14] | 辛耀达, 李娜, 杨乐, 宋维力, 孙磊, 陈浩森, 方岱宁. 锂离子电池植入传感技术[J]. 储能科学与技术, 2022, 11(6): 1834-1846. |
[15] | 燕乔一, 吴锋, 陈人杰, 李丽. 锂离子电池负极石墨回收处理及资源循环[J]. 储能科学与技术, 2022, 11(6): 1760-1771. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||