1 |
LI Y W, WANG C, GONG J F. A wavelet transform-adaptive unscented Kalman filter approach for state of charge estimation of LiFePO4 battery[J]. International Journal of Energy Research, 2018, 42(11): doi: 10.1002/er.3842.
|
2 |
LI B, BEI S. Estimation algorithm research for lithium battery SOC in electric vehicles based on adaptive unscented Kalman filter[J]. Neural Computing and Applications, 2019, 31: 8171-8183.
|
3 |
GUANG Zhong, ZONG Hai, JING Wei, et al. An online model-based method for state of energy estimation of lithium-ion batteries using dual filters[J]. Journal of Power Sources, 2016, 301: 277-286.
|
4 |
OZCAN G, PAJOVIC M, SAHINOGLU Z, et al. Online battery state-of-charge estimation based on sparse gaussian process regression[C]//2016 IEEE Power and Energy Society General Meeting (PESGM), IEEE, 2016.
|
5 |
MENG J, LUO G, GAO F. Lithium polymer battery state-of-charge estimation based on adaptive unscented Kalman filter and support vector machine[J]. IEEE Transactions on Power Electronics, 2015, 31(3): 1.
|
6 |
宁博, 徐俊, 曹秉刚, 等. 采用等效电路的参数自适应电池模型及电池荷电状态估计方法[J].西安交通大学学报, 2015, 49(10): 67-71.
|
|
NING B, XU J, CAO B G, et al. A battery model with adaptive parameters based on equivalent circuit for state of charge estimation [J]. Journal of Xi 'an Jiaotong University, 2015, 49(10): 67-71.
|
7 |
颜湘武,邓浩然, 郭琪, 等. 基于自适应无迹卡尔曼滤波的动力电池健康状态检测及梯次利用研究[J].电工技术学报, 2019, 34(18): 3937-3948.
|
|
YAN X W, DENG H R, GUO Q, et al. Study on the state of health detection of power batteries based on adaptive unscented Kalman filters and the battery echelon utilization[J]. Transactions of China Electrotechnical Society, 2019, 34(18): 3937-3948.
|
8 |
安治国, 田茂飞, 赵琳, 等. 基于自适应无迹卡尔曼滤波的锂电池SOC估计[J]. 储能科学与技术, 2019, 8(5): 856-861.
|
|
AN Z G, TIAN M F, ZHAO L, et al. SOC estimation of lithium battery based on adaptive untracked Kalman filter[J]. Energy Storage Science and Technology, 2019, 8(5): 856-861.
|
9 |
刘伟龙, 王丽芳, 廖承林, 等. 基于模型融合与自适应无迹卡尔曼滤波算法的锂离子电池SOC估计[J]. 汽车工程, 2017, 39(9): 997-1003.
|
|
LIU W L, WANG L F, LIAO C L, et al. Estimation of Li-ion battery SOC based on model fusion and adaptive unscented Kalman filtering algorithm[J]. Automotive Engineering, 2017, 39(9): 997-1003.
|
10 |
魏克新, 陈峭岩. 基于自适应无迹卡尔曼滤波算法的锂离子动力电池状态估计[J]. 中国电机工程学报, 2014, 34(3): 445-452.
|
|
WEI K X, CHEN Q Y. States estimation of Li-ion power batteries based on adaptive unscented Kalman filters [J]. Proceedings of the CSEE, 2014, 34(3): 445-452.
|
11 |
YUE L, CHATTOPADHYAY P, XIONG S, et al. Dynamic data-driven and model-based recursive analysis for estimation of battery state-of-charge[J]. Applied Energy, 2016, 184: 266-275.
|
12 |
CHENG C, RUI X, SHEN W. A lithium-ion battery-in-the-loop approach to test and validate multi-scale dual H infinity filters for state of charge and capacity estimation[J]. IEEE Transactions on Power Electronics, 2018(99): 1.
|
13 |
苏振浩, 李晓杰, 秦晋, 等. 基于BP人工神经网络模型的动力电池SOC估计方法[J]. 储能科学与技术, 2019, 8(5): 868-873.
|
|
SU Z H, LI X J, QIN J, et al. SOC estimation method of power battery based on BP artificial neural network [J]. Energy Storage Science and Technology, 2019, 8(5): 868-873.
|
14 |
戴庚, 耿诗尧.基于最小二乘支持向量机的SOC估计方法[J].信息与电脑(理论版), 2018, 396(2): 36-37.
|
|
DAI G, GENG S Y. SOC estimation based on least aquares support vector machines[J].China Computer & Communication, 2018, 396(2): 36-37.
|
15 |
李嘉波, 魏孟, 叶敏, 等. 基于高斯过程回归的锂离子电池SOC估计[J]. 储能科学与技术, 2020, 9(1): 131-137.
|
|
LI J B, WEI M, YE M, et al. SOC estimation of lithium-ion batteries based on gauss process regression[J]. Energy Storage Science and Technology, 2020, 9(1): 131-137.
|
16 |
叶文, 蔡晨光, 杨平, 等. 融合高斯过程回归的UKF估计方法[J]. 北京航空航天大学学报, 2019, 45(6): 1081-1087.
|
|
YE W, CAI C G, YANG P, et al. UKF estimation method incorporating Gaussian process regression[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(6): 1081-1087.
|