储能科学与技术 ›› 2020, Vol. 9 ›› Issue (4): 1206-1213.doi: 10.19799/j.cnki.2095-4239.2020.0003

• 储能测试与评价 • 上一篇    下一篇

基于高斯过程回归的UKF锂离子电池SOC估计

魏孟1(), 李嘉波1, 李忠玉2, 叶敏1(), 徐信芯1   

  1. 1.长安大学公路养护装备国家工程实验室,陕西 西安 710064
    2.河南省高远公路养护技术有限公司,河南 新乡 453000
  • 收稿日期:2020-01-05 修回日期:2020-01-15 出版日期:2020-07-05 发布日期:2020-06-30
  • 通讯作者: 叶敏 E-mail:wm13484520242@163.com;minye@chd.cn
  • 作者简介:魏孟(1997—),男,博士研究生,研究方向为新能源汽车,E-mail:wm13484520242@163.com;联系人:
  • 基金资助:
    国家自然科学基金青年项目(51805041);河南省交通运输厅科技计划项目(2019J3)

SOC estimation of Li-ion batteries based on Gaussian process regression and UKF

WEI"Meng1(), LI"Jiabo1, LI"Zhongyu2, YE"Min1(), XU"Xinxin1   

  1. 1.Highway Maintenance Equipment National Engineering Laboratory, Changan University, Xi’an 710064, Shaanxi, China
    2.Henan Gaoyuan Highway Maintenance Technology Co. Ltd. , Xinxiang 453000, Henan, China
  • Received:2020-01-05 Revised:2020-01-15 Online:2020-07-05 Published:2020-06-30
  • Contact: Min YE E-mail:wm13484520242@163.com;minye@chd.cn

摘要:

高精度的电池荷电状态估计是电动汽车电池管理系统的关键技术之一,其估计精度直接影响能量管理效率和汽车的续航里程。传统的滤波方法基于模型来估计电池SOC,但难以建立锂离子电池精确的数学模型。针对此问题,提出一种基于高斯过程回归的无迹卡尔曼滤波(UKF)锂离子电池SOC估计方法,使用高斯过程回归在有限的训练数据下建立等效电路模型的测量方程,在UKF和高斯过程回归之间建立关联。该模型能够充分联合利用现有实验数据和被预测实时状态数据,实现SOC估计。结果表明,与传统UKF相比,基于高斯过程回归的UKF算法具有较高精确性。

关键词: 动力电池, 荷电状态, 高斯过程回归, UKF

Abstract:

The high-precision state-of-charge (SOC) estimation of battery power capacity is the key technology associated with a battery management system, and its estimation accuracy directly influences the energy management efficiency and endurance mileage of electric vehicles. The traditional filter estimation method uses an estimation model and does not consider the accuracy model of a Li-ion battery. To solve this problem, an unscented Kalman filter (UKF) estimation method based on Gaussian process regression (GPR) is presented. GPR can be used to establish a measurement equation for an equivalent circuit model with limited training data, resulting in the connection of UKF and GPR. The proposed model optimally uses the data obtained via the tests and the current to estimate the SOC. The experimental results and comparative analysis of the UKF estimation method based on Gaussian process regression demonstrate the high prediction accuracy of the proposed algorithm during SOC estimation.

Key words: power battery, state of charge, Gaussian process regression, UKF

中图分类号: