1 |
鲁豪祺, 林少雄, 陈伟伦, 等. 锂离子电池负极硅碳复合材料的研究进展[J]. 储能科学与技术, 2018, 7(4): 595-606.
|
|
LU H Q, LIN S X, CHEN W L, et al. Research progress on Si/C composites as anode for lithium ion batteries[J]. Energy Storage Science and Technology, 2018, 7(4): 595-606.
|
2 |
FENG K, LI M, LIU W, et al. Silicon-based anodes for lithium-ion batteries: From fundamentals to practical applications[J]. Small, 2018, 14(8): 1-33.
|
3 |
HOROWITZ Y, HAN H L, SOTO F A, et al. Fluor ethylene carbonate as a directing agent in amorphous silicon anodes: Electrolyte interface structure probed by sum frequency vibrational spectroscopy and Ab initio molecular dynamics[J]. Nano Letters, 2018, 18: 1145-1151.
|
4 |
HAN X, ZHANG Z Q, YOU R, et al. Capitalization of interfacial AlON interactions to achieve stable binder-free porous silicon/carbon anodes[J]. Journal of Materials Chemistry A, 2018, 6: 7449-7456.
|
5 |
聂平, 徐桂银, 蒋江民, 等. 预锂化技术及其在高比能硅负极中的应用[J]. 储能科学与技术, 2017, 6(5): 889-903.
|
|
NIE Ping, XU Guiyin, JIANG Jiangmin, et al. Research progress of nano silicon-carbon anode materials for lithium ion battery[J]. Energy Storage Science and Technology, 2020, 7(4): 595-606.
|
6 |
KWON T W, CHOI J W, COSKUN A. The emerging era of supramolecular polymeric binders in silicon anodes[J]. Chemical Society Reviews, 2018, 47: 2145-2164.
|
7 |
GU Y Y, YANG S M, ZHU G B, et al. The effects of cross-linking cations on the electrochemical behavior of silicon anodes with alginate binder[J]. Electrochemical Acta, 2018, 269: 405-414.
|
8 |
LIU D, ZHAO Y, TAN R, et al. Novel conductive binder for high-performance silicon anodes in lithium ion batteries[J]. Nano Energy, 2017, 36: 206-212.
|
9 |
HAYSA K A, RUTHERA R E, KUKAYA A J, et al. What makes lithium substituted polyacrylic acid a better binder than polyacrylic acid for silicon-graphite composite anodes?[J]. Journal of Power Sources, 2018, 384: 136-144.
|
10 |
LI X, KERSEY-BRONEC F E, KE J, et al. Study of lithium silicide nanoparticles as anode materials for advanced lithium ion batteries[J]. ACS Applied Materials & Interfaces, 2017, 9(19): 16071-16080.
|
11 |
CAO Z, XU P, ZHAI H, et al. Ambient-air stable litigated anode for rechargeable Li-ion batteries with high energy density[J]. Nano Letters, 2016, 16(11): 7235-7240.
|
12 |
WU H B, CHEN J S, HNG H H, et al. Nanostructured metal oxide-based materials as advanced anodes for lithium-ion batteries[J]. Nanoscale, 2012, 4(8): 2526-2542.
|
13 |
WU H, CHAN G, CHOI J W, et al. Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control[J]. Nature Nanotechnology, 2012, 7: 310-315.
|
14 |
YAO Y, MCDOWELL M T, RYU I, et al. Interconnected silicon hollow nanospheres for lithium-ion battery anodes with long cycle life[J]. Nano Letters, 2011, 11: 2949-2954.
|
15 |
WANG Jie, LIU Daihuo, WANG Yingying, et al. Dual-carbon enhanced silicon-based composite as superior anode material for lithium ion batteries[J]. Journal of Power Sources, 2016, 307: 738-745.
|