储能科学与技术 ›› 2020, Vol. 9 ›› Issue (4): 1052-1059.doi: 10.19799/j.cnki.2095-4239.2020.0081

• 储能材料与器件 • 上一篇    下一篇

高倍率双层碳包覆硅基复合材料的制备研究

李肖辉(), 陈北海, 陈干杰, 张跃伟, 王京, 古领先   

  1. 许继集团有限公司许昌许继电科储能技术有限公司,河南 许昌 461000
  • 收稿日期:2020-02-24 修回日期:2020-03-12 出版日期:2020-07-05 发布日期:2020-06-30
  • 通讯作者: 李肖辉 E-mail:lee6871833@126.com
  • 作者简介:李肖辉(1989—),男,硕士,主要研究方向为锂离子电池负极材料、电池成组及储能站电池系统,E-mail:lee6871833@126.com

Preparation of high-rate double-layer carbon-coated silicon matrix composite

LI"Xiaohui(), CHEN"Beihai, CHEN"Ganjie, ZHANG"Yuewei, WANG"Jing, GU"Lingxian   

  1. XJ Grope Corporation, XU JI CEPRI Energy Storage Technology Co. Ltd, Xuchang 461000, Henan, China
  • Received:2020-02-24 Revised:2020-03-12 Online:2020-07-05 Published:2020-06-30
  • Contact: Xiaohui LI E-mail:lee6871833@126.com

摘要:

硅材料作为锂离子电池负极材料具有4200 mA·h/g的超高理论比容量,也因此成为了科研机构和高校的研究热点。但是硅基材料在脱嵌锂的过程中有着巨大的体积变化,膨胀收缩率达300%,这造成了电池在充放电过程中电极材料迅速坍塌,导致了电池的循环寿命大大缩短。为了解决这一问题,本文研究了一种通过水热方法,使石墨烯和碳、硅形成一个双层包覆的三维导电网络结构。实验证明,这种Si/C/G(Si/carbon/graphene)三层结构作为锂离子电池负极材料,表现出了优越的电化学性能,比如超长循环寿命、超大充放电倍率等。这种结构的电极片以0.2 A/g的电流密度充放循环50次,比容量在2469 mA·h/g以上;2 A/g的电流密度充放循环300次,比容量保持在1500 mA·h/g以上;此外在超大电流密度32 A/g的情况下测试,比容量保持在471 mA·h/g,并且具有超强的恢复能力,表现出了卓越的倍率性能,说明这种三维导电网络结构复合材料增加了原始材料的强度韧性及导电性。可见,本工作采用的方法、设计的复合材料结构在很大程度上抑制了硅材料作为负极材料的体积效应,在锂离子电池电极材料的研究发展上具有一定的借鉴意义。

关键词: 锂离子电池, 硅, 负极材料, 石墨烯, 双层包覆

Abstract:

Silicon, which is the anode material of lithium-ion batteries, has become a popular research topic owing to its ultrahigh theoretical specific capacity of 4200 mA·h/g. However, the volume of silicon-based materials changes significantly during lithium removal. The expansion and contraction rates become 300%, causing the electrode materials to collapse during charging and discharging and considerably reducing the life cycle of a battery. To resolve this problem, a hydrothermal method is developed to obtain double-layer graphene and carbon-coated silicon for achieving a three-dimensional (3D) conductive network structure. The experimental results show that the silicon/carbon/graphene three-layer structure exhibits an excellent electrochemical performance (e.g., ultralong cycle life and high charge-discharge ratio) as the negative electrode material of the lithium-ion batteries. An electrode having this structure that has been charged and discharged 50 times with a current density of 0.2 A/g has a specific capacity of more than 2469 mA·h/g. When 300 charging and discharging cycles are achieved, a current density of 2 A/g realizes a specific capacity of more than 1500 mA·h/g. The specific capacity remains constant at 471 mA·h/g; however, an excellent recovery ability and rate performance can be observed under a super-large current density of 32 A/g, indicating that the 3D conductive network structure composite material increases the strength, toughness, and conductivity of the original material. Therefore, the method and design of composite materials can considerably inhibit the volume effect of silicon as a negative material, which significantly impacts the research and development of lithium-ion battery electrode materials.

Key words: lithium-ion battery, silicon, anode material, graphene, double-layer coated

中图分类号: