• XXXX •
收稿日期:
2020-03-16
修回日期:
2020-04-01
作者简介:
贾曼曼(1995—),女,硕士研究生在读,主要研究方向为钠离子硫化物电解质,E-mail:基金资助:
Received:
2020-03-16
Revised:
2020-04-01
摘要:
全固态钠离子电池由正极、固态电解质和负极三部分组成,固态电解质作为导通离子隔绝电子的核心部件,既需要高的离子电导率,又要求良好的电解质-电极的固固接触和界面稳定性以维持有效的离子传输。硫化物电解质因具有众多优势而备受关注。近年来,在提高其离子电导率方面已取得较大进展,在对其化学稳定性、与电极材料的界面稳定性等方面研究还在不断深入。本文通过对近期相关文献的梳理,讨论了目前钠离子硫化物无机固态电解质的发展概况,分别对硫化物电解质的制备工艺、结构以及电导率做了系统评述,着重介绍了机械化学合成、固相烧结、以及化学液相合成的方法,系统分析了基于Na3PS4和Na3SbS4的三元硫化物,以及基于Na11Sn2PS12和Na11Sn2SbS12的四元硫化物的成分设计策略,重点总结了阴离子和阳离子掺杂所导致的钠离子空位/间隙、离子结合能、晶格软化、钠离子分布、结构对称性等变化对优化离子输运的作用机制。同时,总结了基于硫化物电解质的全固态钠电池界面特性的研究进展,主要分析了正极-电解质固固接触的改善策略和金属负极-电解质界面失效机理和稳定性提升措施,表明解决界面问题的紧迫性。最后,展望了钠离子硫化物电解质下一步可能的发展方向。
贾曼曼, 张隆. 钠离子硫化物固态电解质研究进展[J]. 储能科学与技术, doi: 10.19799/j.cnki.2095-4239.2020.0108.
Manman JIA, Long ZHANG. Recent development on sulfide solid electrolytes for solid-state sodium batteries[J]. Energy Storage Science and Technology, doi: 10.19799/j.cnki.2095-4239.2020.0108.
表1
不同成分的钠离子硫化物电解质"
组分 | 对称性 | 晶格常数 /(?) | 电导率 /(mS cm-1) | 激活能/(eV) | 原料; 制备方法 | 掺杂效果 | 文献 |
---|---|---|---|---|---|---|---|
Na3PS4 | Cubic I43m | 0.2-0.46 | 0.281-0.198 | Na2S+P2S5;500rpm球磨20h→270度烧结2h | [ | ||
Na3PS4 | Tetragonal P421c | 6.6919 7.0838 | 3.39 | 0.173 | Na2S、P2S5;450度烧结8h→700度烧结12h | [ | |
Na2.9PS3.95Se0.05 | Cubic I43m | 0.121 | 0.230 | Na2S+P2S5+Se;乙腈分散→80度干燥→270度退火 | 扩大Na+扩散通道;产生空位 | [ | |
Na3PSe4 | Cubic I43m | 7.3094 | 1.16 | 0.210 | Na+P+Se; 800度烧结12h | 扩大晶格体积;降低Na+与骨架结合能 | [ |
Na3PSe4 | Cubic I43m | 7.3136 | 0.11 | 0.281 | Na2Se+P+Se;300度烧结12h | 有空位形成 | [ |
Na3SbSe4 | Cubic I43m | 7.4920 | 3.70 | 0.190 | Na+Sb+Se;700度烧结12h | 扩大晶胞体积 | [ |
Na2.9375PS3.9375Cl0.0625 | Tetragonal P421c | 6.9704 7.0925 | 1.14 | 0.249 | Na2S+P2S5+NaCl;800度烧结4h→420度退火2h | 产生Na+空位 | [ |
94Na3PS4·6Na4SiS4 | Cubic I43m | 6.9978 | 0.74 | 0.260 | Na2S+P2S5+SiS2;510rpm球磨15h→220度退火2h | 提高Na2占位 | [ |
Na3.1Ge0.1P0.9S4 | Cubic I43m | 6.9950 | 0.212 | 0.21 | Na2S+P2S5+GeS2;球磨10h→250度退火6h | 提高Na+浓度 | [ |
Na3.1Ti0.1P0.9S4 | Cubic I43m | 6.9893 | 0.23 | 0.20 | Na2S+P2S5+TiS2;球磨10h→250度退火6h | 提高Na+浓度 | [ |
Na3.1Sn0.1P0.9S4 | Cubic I43m | 7.0088 | 0.25 | 0.18 | Na2S+P2S5+SnS2;球磨10h→250度退火6h | 提高Na+浓度 | [ |
Na3P0.62As0.38S4 | Tetragonal P421c | 1.46 | 0.256 | Na2S+P2S5+As2S5;510rpm球磨15h→270度退火2h | 提高离子电导率、空气稳定性 | [ | |
Na2.730Ca0.135PS4 | Cubic I43m | 6.9768 | 1.40 | 0.346 | Na2S+P2S5+CaS;500rpm球磨5h→700度退火12h | 提高钠离子空位 | [ |
Na3SbS4 | Tetragonal P421c | 7.1597 7.2906 | 3.00 | 0.250 | Na+Sb+S;700度烧结12h | [ | |
Na3SbS4 | Tetragonal P421c | 7.1453 7.2770 | 1.10 | 0.200 | Na2S+Sb2S3+S;550度烧结→甲醇/水溶液法 | [ | |
Na3SbS4 | Tetragonal P421c | 0.10-0.20 | 0.270-0.350 | Na2S+Sb2S3+S;溶于水→干燥后200度退火 | [ | ||
Na3SbS4 | Cubic I43m | 7.1570 7.2874 | 1.05 | 0.220 | Na3SbS4·9H2O;150度1h脱水 | [ | |
Na2.88Sb0.88W0.12S4 | Cubic I43m | 7.1920 | 32 | 0.177 | Na2S+S +Sb2S3+WS2;510rpm球磨5h/30h→275度退火 | 增大空位浓度,稳定立方相 | [ |
Na10SnP2S12 | Tetragonal P42/nmc | 9.6800 13.6300 | 0.4 | 0.356 | Na2S+P2S5+SnS2;380rpm球磨17h→700度退火 | [ | |
Na10GeP2S12 | Tetragonal P42/nmc | 9.5700 13.4300 | 0.024 | 0.4160 | Na2S+P2S5+SnS2;510rpm球磨5h→235度退火1h | [ | |
Na11Sn2PS12 | Tetragonal I41/acd | 13.6148 27.2244 | 1.40 | 0.250 | Na2S+P2S5+SnS2;700度烧结2h并缓慢降温 | [ | |
Na11Sn2PS12 | Tetragonal I41/acd | 13.6436 27.2715 | 3.70 | 0. 387 | Na3PS4+Na4SnS4;420度烧结24h | [ | |
Na11Sn2PSe12 | Tetragonal I41/acd | 14.2741 28.5113 | 1.00 | Na+P+Sn+Se;450rpm球磨15h→550度退火6h | [ |
1 | YUAN H, PENG H J, HUANG J Q, et al. Sulfur redox reactions at working interfaces in lithium-sulfur batteries: A Perspective[J]. Advanced Materials Interfaces, 2019, 6(4): 1802046. |
2 | GAO Z, SUN H, FU L, et al. Promises, challenges, and recent progress of inorganic solid-state electrolytes for all-solid-state lithium batteries[J]. Advanced Materials, 2018, 30(17): 1705702. |
3 | 张强, 姚霞银, 张洪周, 等. 全固态锂电池界面的研究进展[J]. 储能科学与技术, 2016, 5(5): 659-667. |
ZHANG Q, YAO X Y, ZHANG H Z, et al. Research progress on interfaces of all solid lithium batteries[J]. Energy Storage Science and Technology, 2016, 5(5): 659-667. | |
4 | 方铮, 曹余良, 胡勇胜,等. 室温钠离子电池技术经济性分析[J]. 储能科学与技术, 2016, 5(2): 149-158. |
FANG Z, CAO Y L, HU Y S, et al. Economic analysis for room-temperature sodium-ioon battery technologies[J]. Energy Storage Science and Technology, 2016, 5(2): 149-158. | |
5 | LIU T, ZHANG Y, JIANG Z, et al. Exploring competitive features of stationary sodium ion batteries for electrochemical energy storage[J]. Energy & Environmental Science, 2019, 12(5): 1512-1533. |
6 | 容晓晖, 陆雅翔, 戚兴国, 等. 钠离子电池:从基础研究到工程化探索[J]. 储能科学与技术, 2020, 9(2): 515-522. |
RONG X H, LU Y X, QI X G, et al. Na-ion batteries: From fundamental research to engineering exploration[J]. Energy Storage Science and Technology, 2020, 9(2): 515-522. | |
7 | VAALMA C, BUCHHOLZ D, WEIL M, et al. A cost and resource analysis of sodium-ion batteries.[J]. Nature Reviews Materials, 2018, 3(18013): |
8 |
FENG X, REN D, HE X, et al. Mitigating thermal runaway of lithium-ion batteries[J]. Joule, 2020, doi:10.1016/j.joule.2020.02.010:
doi: 10.1016/j.joule.2020.02.010: |
9 | LU Y, RONG X, HU Y S, et al. Research and development of advanced battery materials in China[J]. Energy Storage Materials, 2019, 23: 144-153. |
10 |
曹余良. 钠离子电池机遇与挑战[J]. 储能科学与技术, 2020, doi:10.19799/j.cnki.2095-4239.2020.0026:
doi: 10.19799/j.cnki.2095-4239.2020.0026: |
CAO Y L. The opportunities and challenges of sodium ion battery[J]. Energy Storage Science and Technology, 2020, doi:10.19799/j.cnki.2095-4239.2020.0026:
doi: 10.19799/j.cnki.2095-4239.2020.0026: |
|
11 | HU Y S, LU Y. 2019 Nobel Prize for the Li-ion batteries and new opportunities and challenges in Na-ion batteries[J]. ACS Energy Letters, 2019, 4(11): 2689-2690. |
12 | 陆雅翔, 赵成龙, 容晓晖, 等. 室温钠离子电池材料及器件研究进展[J]. 物理学报, 2018, 067(012): 37-48. |
LU Y X, ZHAO C L, RONG X H, et al. Research progress of materials and devices for room-temperature Na-ion batteries[J]. Acta Phys. –Chim. Sin. 2018, 67(12): 120601. | |
13 | FANG Y, XIAO L, AI X, et al. Hierarchical carbon framework wrapped Na3V2(PO4)3 as a superior high-rate and extended lifespan cathode for sodium-ion batteries[J]. Advanced Materials, 2015, 27(39): 5895-5900. |
14 | ADELHELM P, HARTMANN P, BENDER C L, et al. From lithium to sodium: cell chemistry of room temperature sodium-air and sodium-sulfur batteries[J]. Beilstein J Nanotechnol, 2015, 6: 1016-1055. |
15 | HWANG J Y, MYUNG S T, SUN Y K. Sodium-ion batteries: present and future[J]. Chemical Society Reviews, 2017, 46(12): 3529-3614. |
16 | DENG J, LUO W-B, S-L CHOU, et al. Sodium-ion batteries: From academic research to practical commercialization[J]. Advanced Energy Materials, 2018, 8(4): 1701428. |
17 | YU F, DU L, ZHANG G, et al. Electrode engineering by atomic layer deposition for sodium‐ion batteries: From traditional to advanced batteries[J]. Advanced Functional Materials, 2019, 10.1002/adfm.201906890: 1906890. |
18 | NAYAK P K, YANG L, BREHM W, et al. From lithium-ion to sodium-ion batteries: advantages, challenges, and surprises[J]. Angew Chem Int Ed Engl, 2018, 57(1): 102-120. |
19 | 陈光海, 白莹, 高永晟, 等. 全固态钠离子电池硫系化合物电解质[J]. 物理化学学报, 2020, 36(5): 1905009. |
CHEN G H, BAI Y, GAO Y S, et al. Chalcogenide electrolytes for all-solid-state sodium ion batteries[J]. Acta Phys. –Chim. Sin. 2020, 36(5), 1905009. | |
20 | LEWIS J A, TIPPENS J, CORTES F J Q, et al. Chemo-mechanical challenges in solid-state batteries[J]. Trends in Chemistry, 2019, 1(9): 845-857. |
21 | 张隆, 杨坤, 董建英, 等. 硫代快离子导体电解质材料的研究进展[J]. 燕大学报, 2015, 39(2): 95-106. |
ZHANG L,YANG K, DONG J Y, et al. Recent developments in thio-LISICON solid electrolytes[J]. Journal of Yanshan University, 2015, 39(2): 95-106. | |
22 | 刘丽露, 戚兴国, 邵元骏, 等. 全固态锂电池界面的研究进展[J]. 储能科学与技术, 2017, 6(5): 962-980. |
LIU L L, QI X G, SHAO Y J, et al. Research progress on sodium ion solid-state electrolytes[J]. Energy Storage Science and Technology, 2017, 6(5): 962-980. | |
23 | FAMPRIKIS T, CANEPA P, DAWSON J A, et al. Fundamentals of inorganic solid-state electrolytes for batteries[J]. Nature Materials, 2019, 18(12): 1278-1291. |
24 | KIM J G, SON B, MUKHERJEE S, et al. A review of lithium and non-lithium based solid state batteries[J]. Journal of Power Sources, 2015, 282: 299-322. |
25 | FAN L, WEI S, LI S, et al. Recent progress of the solid-state electrolytes for high-energy metal-based batteries[J]. Advanced Energy Materials, 2018, 8(11): 1702657. |
26 | ZHANG Z, ZHANG L, LIU Y, et al. Synthesis and characterization of argyrodite solid electrolytes for all-solid-state Li-ion batteries[J]. Journal of Alloys and Compounds, 2018, 747: 227-235. |
27 | YANG K, DONG J, ZHANG L, et al. Dual doping: An effective method to enhance the electrochemical properties of Li10GeP2S12-based solid electrolytes[J]. Journal of the American Ceramic Society, 2015, 98(12): 3831-3835. |
28 | NAKAMURA T, AMEZAWA K, KULISCH J, et al. Guidelines for all-solid-state battery design and electrode buffer layers based on chemical potential profile calculation[J]. ACS Applied Materials Interfaces, 2019, 11(22): 19968-19976. |
29 | LEE B, PAEK E, MITLIN D, et al. Sodium metal anodes: Emerging solutions to dendrite growth[J]. Chemical Reviews, 2019, 119(8): 5416-5460. |
30 | TATSUMISAGO M, HAYASHI A. Sulfide glass-ceramic electrolytes for all-solid-state lithium and sodium batteries[J]. International Journal of Applied Glass Science, 2014, 5(3): 226-235. |
31 | CHEN T, ZHANG L, ZHANG Z, et al. Argyrodite solid electrolyte with a stable interface and superior dendrite suppression capability realized by ZnO co-doping[J]. ACS Applied Material Interfaces, 2019, 11(43): 40808-40816. |
32 | ZHANG Z, SHAO Y, LOTSCH B, et al. New horizons for inorganic solid state ion conductors[J]. Energy & Environmental Science, 2018, 11(8): 1945-1976. |
33 |
PARK K H. Design strategies, practical considerations, and new solution processes of sulfide solid electrolytes for all‐solid‐state batteries[J]. Advanced Energy Materials, 2018, doi:10.1002/aenm.201800035:
doi: 10.1002/aenm.201800035: |
34 | HAYASHI A, NOI K, SAKUDA A, et al. Superionic glass-ceramic electrolytes for room-temperature rechargeable sodium batteries[J]. Nature Communications, 2012, 3: 856. |
35 | TANIBATA N, NOI K, HAYASHI A, et al. Preparation and characterization of highly sodium ion conducting Na3PS4–Na4SiS4 solid electrolytes[J]. RSC Advances, 2014, 4(33): 17120-17123. |
36 | YU Z, SHANG S L, SEO J H, et al. Exceptionally high ionic conductivity in Na3P0.62As0.38S4 with improved moisture stability for solid-state sodium-ion batteries[J]. Advanced Materials, 2017, 29(16): 1605561. |
37 | RAO R P, CHEN H, WONG L L, et al. Na3+xMxP1-xS4(M = Ge4+, Ti4+, Sn4+) enables high rate all-solid-state Na-ion batteries Na2+2δFe2-δ(SO4)3|Na3+xMxP1-xS4|Na2Ti3O7[J]. Journal of Materials Chemistry A, 2017, 5(7): 3377-3388. |
38 | ZHANG D, CAO X, XU D, et al. Synthesis of cubic Na3SbS4 solid electrolyte with enhanced ion transport for all-solid-state sodium-ion batteries[J]. Electrochimica Acta, 2018, 259: 100-109. |
39 | WANG H, YU M, WANG Y, et al. In-situ investigation of pressure effect on structural evolution and conductivity of Na3SbS4 superionic conductor[J]. Journal of Power Sources, 2018, 401: 111-116. |
40 | ZHANG L, YANG K, MI J, et al. Na3PSe4: A novel chalcogenide solid electrolyte with high ionic conductivity[J]. Advanced Energy Materials, 2015, 5(24): 1501294. |
41 | ZHANG L, ZHANG D, YANG K, et al. Vacancy-contained tetragonal Na3SbS4 superionic conductor[J]. Advanced Science, 2016, 3(10): 1600089. |
42 | CHU I H, KOMPELLA C S, NGUYEN H, et al. Room-temperature all-solid-state rechargeable sodium-ion batteries with a Cl-doped Na3PS4 superionic conductor[J]. Scientific Reports, 2016, 6: 33733. |
43 | YUBUCHI S, HAYASHI A, TATSUMISAGO M. Sodium-ion conducting Na3PS4 electrolyte synthesized via a liquid-phase process using N-methylformamide[J]. Chemistry Letters, 2015, 44(7): 884-886. |
44 | WAN H, MWIZERWA J P, QI X, et al. Core-shell Fe1- xS@Na2.9PS3.95Se0.05 nanorods for room temperature all-solid-state sodium batteries with high energy density[J]. ACS Nano, 2018, 12(3): 2809-2817. |
45 | KIM T W, PARK K H, CHOI Y E, et al. Aqueous-solution synthesis of Na3SbS4 solid electrolytes for all-solid-state Na-ion batteries[J]. Journal of Materials Chemistry A, 2018, 6(3): 840-844. |
46 | JANSEN M, HENSELER U. Synthesis, structure determination, and ionic conductivity of sodium tetrathiophosphate[J]. Journal of Solid State Chemistry, 1992, 99: 110-119. |
47 | HAYASHI A, NOI K, TANIBATA N, et al. High sodium ion conductivity of glass–ceramic electrolytes with cubic Na3PS4[J]. Journal of Power Sources, 2014, 258: 420-423. |
48 | DE KLERK N J J, WAGEMAKER M. Diffusion mechanism of the sodium-ion solid electrolyte Na3PS4 and potential improvements of halogen doping[J]. Chemistry of Materials, 2016, 28(9): 3122-3130. |
49 | YU C, GANAPATHY S, DE KLERK N J J, et al. Na-ion dynamics in tetragonal and cubic Na3PS4, a Na-ion conductor for solid state Na-ion batteries[J]. Journal of Materials Chemistry A, 2016, 4(39): 15095-15105. |
50 | TAKEUCHI S, SUZUKI K, HIRAYAMA M, et al. Sodium superionic conduction in tetragonal Na3PS4[J]. Journal of Solid State Chemistry, 2018, 265: 353-358. |
51 | KRAUSKOPF T, CULVER S P, ZEIER W G. Local tetragonal structure of the cubic superionic conductor Na3PS4[J]. Inorganic Chemistry, 2018, 57(8): 4739-4744. |
52 | ÅVALL G, MINDEMARK J, BRANDELL D, et al. Sodium-ion battery electrolytes: Modeling and simulations[J]. Advanced Energy Materials, 2018, 8(17): 1703036. |
53 | WANG N, YANG K, ZHANG L, et al. Improvement in ion transport in Na3PSe4–Na3SbSe4 by Sb substitution[J]. Journal of Materials Science, 2018, 53(3): 1987-1994. |
54 | BO S H, WANG Y, KIM J C, et al. Computational and experimental investigations of Na-ion conduction in cubic Na3PSe4[J]. Chemistry of Materials, 2015, 28(1): 252-258. |
55 | BO S H, WANG Y, CEDER G. Structural and Na-ion conduction characteristics of Na3PSxSe4-x[J]. Journal of Materials Chemistry A, 2016, 4(23): 9044-9053. |
56 | KRAUSKOPF T, POMPE C, KRAFT M A, et al. Influence of lattice dynamics on Na+ transport in the solid electrolyte Na3PS4–xSex[J]. Chemistry of Materials, 2017, 29(20): 8859-8869. |
57 | UEMATSU M, YUBUCHI S, TSUJI F, et al. Suspension synthesis of Na3-xPS4-xClx solid electrolytes[J]. Journal of Power Sources, 2019, 428: 131-135. |
58 | TANIBATA N, NOI K, HAYASHI A, et al. X-ray crystal structure analysis of sodium-ion conductivity in 94 Na3PS4⋅6 Na4SiS4 glass-ceramic electrolytes[J]. ChemElectroChem, 2014, 1(7): 1130-1132. |
59 | ZHU Z, CHU I H, DENG Z, et al. Role of Na+ interstitials and dopants in enhancing the Na+ conductivity of the cubic Na3PS4 superionic conductor[J]. Chemistry of Materials, 2015, 27(24): 8318-8325. |
60 | SHANG S L, YU Z, WANG Y, et al. Origin of outstanding phase and moisture stability in a Na3P1-xAsxS4 superionic conductor[J]. ACS Applied Material Interfaces, 2017, 9(19): 16261-16269. |
61 | MOON C K, H-J LEE, PARK K H, et al. Vacancy-driven Na+ superionic conduction in new Ca-doped Na3PS4 for all-solid-state Na-ion batteries[J]. ACS Energy Letters, 2018, 3(10): 2504-2512. |
62 | HOU W, GUO X, SHEN X, et al. Solid electrolytes and interfaces in all-solid-state sodium batteries: Progress and perspective[J]. Nano Energy, 2018, 52: 279-291. |
63 | BANERJEE A, PARK K H, HEO J W, et al. Na3SbS4: A solution processable sodium superionic conductor for all-solid-state sodium-ion batteries[J]. Angewandte Chemie International Edition, 2016, 55(33): 9634-9638. |
64 | WANG H, CHEN Y, HOOD Z D, et al. An air-stable Na3SbS4 superionic conductor prepared by a rapid and economic synthetic procedure[J]. Angewandte Chemie International Edition, 2016, 55(30): 8551-8555. |
65 | XIONG S, LIU Z, RONG H, et al. Na3SbSe4-xSx as Sodium Superionic Conductors[J]. Scientific Reports, 2018, 8(1): 9146. |
66 | WAN H, MWIZERWA J P, HANC F, et al. Grain-boundary-resistance-less Na3SbS4-xSex solid electrolytes for all-solid-state sodium batteries[J]. Nano Energy, 2019, 66: 104109. |
67 | HEO J W, BANERJEE A, PARK K H, et al. New Na-ion solid electrolytes Na4-xSn1-xSbxS4(0.02 ≤ x≤ 0.33) for all-solid-state Na-ion batteries[J]. Advanced Energy Materials, 2018, 8(11): 1702716. |
68 | 张德超, 张隆. 掺杂型 Na3SbS4 钠离子固体电解质的制备与离子输运性能研究[J]. 燕大学报, 2018, 43(2): 118-138. |
ZHANG D C, ZHANG L. Synthesis and conductivity of Na3SbS4–based sodium solid electrolytes[J]. Journal of Yanshan University, 2018, 43(2): 118-138. | |
69 | HAYASHI A, MASUZAWA N, YUBUCHI S, et al. A sodium-ion sulfide solid electrolyte with unprecedented conductivity at room temperature[J]. Nature Communications, 2019, 10(1): 5266. |
70 | FUCHS T, CULVER S P, TILL P, et al. Defect-mediated conductivity enhancements in Na3–xPn1–xWxS4 (Pn = P, Sb) using aliovalent substitutions[J]. ACS Energy Letters, 2019, 5(1): 146-151. |
71 |
YUBUCHI S, ITO A, MASUZAWA N, et al. Aqueous solution synthesis of Na3SbS4–Na2WS4 superionic conductors[J]. Journal of Materials Chemistry A, 2020, doi:10.1039/c9ta02246e:
doi: 10.1039/c9ta02246e: |
72 | KAMAYA N, HOMMA K, YAMAKAWA Y, et al. A lithium superionic conductor[J]. Nature Materials, 2011, 10(9): 682-686. |
73 | KANDAGAL V S, BHARADWAJ M D, WAGHMARE U V. Theoretical prediction of a highly conducting solid electrolyte for sodium batteries: Na10GeP2S12[J]. Journal of Materials Chemistry A, 2015, 3(24): 12992-12999. |
74 | TSUJI F, TANIBATA N, SAKUDA A, et al. Preparation of sodium ion conductive Na10GeP2S12 glass-ceramic electrolytes[J]. Chemistry Letters, 2018, 47(1): 13-15. |
75 | RICHARDS W D, TSUJIMURA T, MIARA L J, et al. Design and synthesis of the superionic conductor Na10SnP2S12[J]. Nature Communications, 2016, 7: 11009. |
76 | ZHANG Z, RAMOS E, LALèRE F, et al. Na11Sn2PS12: a new solid state sodium superionic conductor[J]. Energy & Environmental Science, 2018, 11(1): 87-93. |
77 | OH K, CHANG D, PARK I, et al. First-principles investigations on sodium superionic conductor Na11Sn2PS12[J]. Chemistry of Materials, 2019, 31(16): 6066-6075. |
78 | DUCHARDT M, RUSCHEWITZ U, ADAMS S, et al. Vacancy-controlled Na+ superion conduction in Na11Sn2PS12[J]. Angew Chemie International Edition, 2018, 57: 1351-1355. |
79 | YU Z, SHANG S-L, GAO Y, et al. A quaternary sodium superionic conductor - Na10.8Sn1.9PS11.8[J]. Nano Energy, 2018, 47: 325-330. |
80 | RAO R P, ZHANG X, PHUAH K C, et al. Mechanochemical synthesis of fast sodium ion conductor Na11Sn2PSe12 enables first sodium–selenium all-solid-state battery[J]. Journal of Materials Chemistry A, 2019, 7(36): 20790-20798. |
81 | RAMOS E P, ZHANG Z, ASSOUD A, et al. Correlating Ion mobility and single crystal structure in sodium-ion chalcogenide-based solid state fast ion conductors: Na11Sn2PnS12 (Pn = Sb, P)[J]. Chemistry of Materials, 2018, 30(21): 7413-7417. |
82 | LIU J, LU Z, EFFAT M B, et al. A theoretical study on the stability and ionic conductivity of the Na11M2PS12 (M = Sn, Ge) superionic conductors[J]. Journal of Power Sources, 2019, 409: 94-101. |
83 | WAN H, CAI L, WENG W, et al. Cobalt-doped pyrite for Na11Sn2SbS11.5Se0.5 electrolyte based all-solid-state sodium battery with enhanced capacity[J]. Journal of Power Sources, 2020, 449: |
84 | TIAN Y, SHI T, RICHARDS W D, et al. Compatibility issues between electrodes and electrolytes in solid-state batteries[J]. Energy & Environmental Science, 2017, 10: 1150-1166. |
85 |
ZHANG L, YANG T, DU C, et al. Lithium whisker growth and stress generation in an in situ atomic force microscope-environmental transmission electron microscope set-up[J]. Nature Nanotechnology, 2020, doi:10.1038/s41565-019-0604-x: 1-5.
doi: 10.1038/s41565-019-0604-x: 1-5 |
86 | HAN F, WESTOVER A S, YUE J, et al. High electronic conductivity as the origin of lithium dendrite formation within solid electrolytes[J]. Nature Energy, 2019, 4(3): 187-196. |
87 | ALBERTUS P, BABINEC S, LITZELMAN S, et al. Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries[J]. Nature Energy, 2017, 3(1): 16-21. |
88 | LACIVITA V, WANG Y, BO S-H, et al. Ab initio investigation of the stability of electrolyte/electrode interfaces in all-solid-state Na batteries[J]. Journal of Materials Chemistry A, 2019, 7(14): 8144-8155. |
89 | WANG Y, WANG Y, WANG Y X, et al. Developments and perspectives on emerging high-energy-density sodium-metal batteries[J]. Chem, 2019, 5(10): 2547-2570. |
90 | MATIOS E, WANG H, WANG C, et al. Enabling safe sodium metal batteries by solid electrolyte interphase engineering: A Review[J]. Industrial & Engineering Chemistry Research, 2019, 58(23): 9758-9780. |
91 | ZHANG Z, CAO H, YANG M, et al. High performance room temperature all-solid-state Na-SexS battery with Na3SbS4–coated cathode via aqueous solution[J]. Journal of Energy Chemistry, 2020, 48: 250-258. |
92 | WAN H, MWIZERWA J P, QI X, et al. Nanoscaled Na3PS4 solid electrolyte for all-solid-state FeS2/Na batteries with ultrahigh initial coulombic efficiency of 95% and excellent cyclic performances[J]. ACS Appl Mater Interfaces, 2018, 10(15): 12300-12304. |
93 | PARK K H, KIM D H, KWAK H, et al. Solution-derived glass-ceramic NaI center dot Na3SbS4 superionic conductors for all-solid-state Na-ion batteries[J]. Journal of Materials Chemistry A, 2018, 6: 17192-17200. |
94 | FAN L, LI X. Recent advances in effective protection of sodium metal anode[J]. Nano Energy, 2018, 53: 630-642. |
95 | WU E A, KOMPELLA C S, ZHU Z, et al. New insights into the interphase between the Na metal anode and sulfide solid-state electrolytes: A joint experimental and computational study[J]. ACS Applied Material Interfaces, 2018, 10(12): 10076-10086. |
96 | WENZEL S, LEICHTWEISS T, WEBER D A, et al. Interfacial reactivity renchmarking of the sodium ion conductors Na3PS4 and sodium beta-alumina for protected sodium metal anodes and sodium all-solid-state batteries[J]. ACS Applied Material Interfaces, 2016, 8(41): 28216-28224. |
97 | XU X, LI Y, CHENG J, et al. Composite solid electrolyte of Na3PS4-PEO for all-solid-state SnS2/Na batteries with excellent interfacial compatibility between electrolyte and Na metal[J]. Journal of Energy Chemistry, 2020, 41: 73-78. |
98 | CHOUDHURY S, WEI S, OZHABES Y, et al. Designing solid-liquid interphases for sodium batteries[J]. Nature Communications, 2017, 8(1): 1-10. |
99 | TIAN Y, SUN Y, HANNAH D C, et al. Reactivity-guided interface design in Na metal solid-state batteries[J]. Joule, 2019, 3(4): 1037-1050. |
100 | HU P, ZHANG Y, CHI X, et al. Stabilizing the Interface between sodium metal anode and sulfide-based solid-state electrolyte with an electron-blocking interlayer[J]. ACS Applied Material Interfaces, 2019, 11(10): 9672-9678. |
101 | 创 刘, 卢海燕, 曹余良. 钠离子电池合金类负极材料的研究进展[J]. 中国材料进展, 2017, 36(10): 718-727. |
LIU C, LU H Y, CAO Y L. Research progress on alloy anode materials for sodium ion batteries[J]. MATERIALS CHINA, 2017, 36(10): 718-727. | |
102 | NAM D H, HONG K S, LIM S J, et al. Electrochemical properties of electrodeposited Sn anodes for Na-ion batteries[J]. The Journal of Physical Chemistry C, 2014, 118(35): 20086-20093. |
103 | DATTA M K, EPUR R, SAHA P, et al. Tin and graphite based nanocomposites: Potential anode for sodium ion batteries[J]. Journal of Power Sources, 2013, 225: 316-322. |
104 | TANIBATA N, HAYASHI A, TATSUMISAGO M. Improvement of rate performance for all-solid-state Na15Sn4/Amorphous TiS3 cells using 94Na3PS4·6Na4SiS4 glass-ceramic electrolytes[J]. Journal of The Electrochemical Society, 2015, 162(6): A793-A795. |
105 | TANIBATA N, MATSUYAMA T, HAYASHI A, et al. All-solid-state sodium batteries using amorphous TiS3 electrode with high capacity[J]. Journal of Power Sources, 2015, 275: 284-287. |
106 | LIU Y, LIU X, WANG T, et al. Research and application progress on key materials for sodium-ion batteries[J]. Sustainable Energy & Fuels, 2017, 1(5): 986-1006. |
107 | HUANG Y, ZHAO L, LI L, et al. Electrolytes and electrolyte/electrode interfaces in sodium-ion batteries: From scientific research to practical application[J]. Advanced Materials, 2019, 31(21): 1808393. |
[1] | 王培灿, 万磊, 徐子昂, 许琴, 庞茂斌, 陈金勋, 王保国. 基于界面工程的自支撑催化电极用于电解水制氢[J]. 储能科学与技术, 2022, 11(6): 1934-1946. |
[2] | 李一涛, 沈凯尔, 庞全全. 有机物辅助的硫化物电解质基固态电池[J]. 储能科学与技术, 2022, 11(6): 1902-1918. |
[3] | 翁素婷, 刘泽鹏, 杨高靖, 张思蒙, 张啸, 方遒, 李叶晶, 王兆翔, 王雪锋, 陈立泉. 冷冻电镜表征锂电池中的辐照敏感材料[J]. 储能科学与技术, 2022, 11(3): 760-780. |
[4] | 赵志伟, 杨智, 彭章泉. 飞行时间二次离子质谱在锂基二次电池中的应用[J]. 储能科学与技术, 2022, 11(3): 781-794. |
[5] | 杜昭, 阳康, 舒高, 韦攀, 杨肖虎. 金属泡沫内石蜡固液相变蓄热/放热实验[J]. 储能科学与技术, 2022, 11(2): 531-537. |
[6] | 许卓, 郑莉莉, 陈兵, 张涛, 常修亮, 韦守李, 戴作强. 固态电池复合电解质研究综述[J]. 储能科学与技术, 2021, 10(6): 2117-2126. |
[7] | 池上森, 姜益栋, 王庆荣, 叶子威, 余凯, 马骏, 靳俊, 王军, 王朝阳, 温兆银, 邓永红. 液体电解液改性石榴石型固体电解质与锂负极的界面[J]. 储能科学与技术, 2021, 10(3): 914-924. |
[8] | 张赛赛, 赵海雷. 石榴石型Li7La3Zr2O12固态锂金属电池的界面问题研究进展[J]. 储能科学与技术, 2021, 10(3): 863-871. |
[9] | 朱鑫鑫, 蒋伟, 万正威, 赵澍, 李泽珩, 王利光, 倪文斌, 凌敏, 梁成都. 固态锂硫电池电解质及其界面问题研究进展[J]. 储能科学与技术, 2021, 10(3): 848-862. |
[10] | 吴勰, 周莉, 薛照明. 基于螯合B类锂盐的固态聚合物电解质的合成及其性能[J]. 储能科学与技术, 2021, 10(1): 96-103. |
[11] | 林乙龙, 肖敏, 韩东梅, 王拴紧, 孟跃中. 锂离子电池化成技术研究进展[J]. 储能科学与技术, 2021, 10(1): 50-58. |
[12] | 牟粤, 杜韫, 明海, 张松通, 邱景义. 锂离子电池正极材料本体结构演变及界面行为研究方法[J]. 储能科学与技术, 2021, 10(1): 7-26. |
[13] | 张晶晶, 崔孝玲, 赵冬妮, 杨莉, 王洁. 高浓度电解液对电极/电解液界面的影响[J]. 储能科学与技术, 2021, 10(1): 143-149. |
[14] | 贾曼曼, 张隆. 钠离子硫化物固态电解质研究进展[J]. 储能科学与技术, 2020, 9(5): 1266-1283. |
[15] | 杨菁, 刘高瞻, 沈麟, 姚霞银. NASICON结构钠离子固体电解质及固态钠电池应用研究进展[J]. 储能科学与技术, 2020, 9(5): 1284-1299. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||