储能科学与技术 ›› 2020, Vol. 9 ›› Issue (5): 1428-1442.doi: 10.19799/j.cnki.2095-4239.2020.0272
田丰(), 起文斌, 季洪祥, 田孟羽, 乔荣涵, 岑官骏, 申晓宇, 武怿达, 詹元杰, 金周, 闫勇, 贲留斌, 俞海龙, 黄学杰()
收稿日期:
2020-08-17
修回日期:
2020-08-20
出版日期:
2020-09-05
发布日期:
2020-09-08
通讯作者:
黄学杰
E-mail:fengtiannn@163.com;xjhuang@jphy.ac.an
作者简介:
田丰(1995—),男,博士研究生,研究方向为固态锂离子电池正极材料,E-mail:Feng TIAN(), Wenbin QI, Hongxiang JI, Mengyu TIAN, Ronghan QIAO, Guanjun CEN, Xiaoyu SHEN, Yida WU, Yuanjie ZHAN, Zhou JIN, Yong YAN, Liubin BEN, Hailong YU, Xuejie HUANG()
Received:
2020-08-17
Revised:
2020-08-20
Online:
2020-09-05
Published:
2020-09-08
Contact:
Xuejie HUANG
E-mail:fengtiannn@163.com;xjhuang@jphy.ac.an
摘要:
该文是一篇近两个月的锂电池文献评述,以“lithium”和“batter*”为关键词检索了Web of Science从2020年6月1日至2020年7月31日上线的锂电池研究论文,共有3632篇,选择其中100篇加以评论。正极材料方面主要研究了高镍三元、镍酸锂和高压钴酸锂的包覆和掺杂改性以及相关单晶材料的合成探索。硅基复合负极材料的研究侧重于优化电极结构以缓冲体积变化,金属锂负极的研究侧重于电极三维结构的构建。固态电解质的研究主要集中于新型固态电解质的探索以及对锂离子输运机理的理解,其他电解液方面主要涉及对溶剂、锂盐的调控优化以及对各类功能性添加剂的研究。固态电池和锂硫电池方向更多的关注于三维复合正极的设计开发。表征测试技术方面偏重于使用各种成像手段从多个尺度对电极内部微结构进行直观分析,且使用原位和非原位方法对电化学过程中各类性质的演变进行观测。此外,关于结构和界面模拟的理论计算工作也有多篇。
中图分类号:
田丰, 起文斌, 季洪祥, 田孟羽, 乔荣涵, 岑官骏, 申晓宇, 武怿达, 詹元杰, 金周, 闫勇, 贲留斌, 俞海龙, 黄学杰. 锂电池百篇论文点评(2020.06.01—2020.07.31)[J]. 储能科学与技术, 2020, 9(5): 1428-1442.
Feng TIAN, Wenbin QI, Hongxiang JI, Mengyu TIAN, Ronghan QIAO, Guanjun CEN, Xiaoyu SHEN, Yida WU, Yuanjie ZHAN, Zhou JIN, Yong YAN, Liubin BEN, Hailong YU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries(Jun. 01, 2020 to Jul. 31, 2020)[J]. Energy Storage Science and Technology, 2020, 9(5): 1428-1442.
1 | QIU Q Q, SHADIKE Z, WANG Q C, et al. Improving the electrochemical performance and structural stability of the LiNi0.8Co0.15Al0.05O2 cathode material at high-voltage charging through Ti substitution[J]. ACS Applied Materials & Interfaces, 2019, 11(26): 23213-23221. |
2 | ZHU J, SHARIFI-ASL S, GARCIA J C, et al. Atomic-level understanding of surface reconstruction based on Li NixMnyCo1-x-y O-2 single-crystal studies[J]. ACS Applied Energy Materials, 2020, 3(5): 4799-4811. |
3 | ALVARADO J, WEI C, NORDLUND D, et al. Thermal stress-induced charge and structure heterogeneity in emerging cathode materials[J]. Materials Today, 2020, 35: 87-98. |
4 | ZHU Z, YU D, SHI Z, et al. Gradient-morph LiCoO2 single crystals with stabilized energy density above 3400 W·h/L[J]. Energy & Environmental Science, 2020, 13(6): 1865-1878. |
5 | PANG P, WANG Z, DENG Y, et al. Delayed phase transition and improved cycling/thermal stability by spinel LiNi0.5Mn1.5O4 modification for LiCoO2 cathode at high voltages[J]. ACS Applied Materials & Interfaces, 2020, 12(24): 27339-27349. |
6 | CAO H, DU F, ADKINS J, et al. Al-doping induced superior lithium ion storage capability of LiNiO2 spheres[J]. Ceramics International, 2020, 46(12): 20050-20060. |
7 |
LI W, LEE S, MANTHIRAM A. High-nickel NMA: A cobalt-free alternative to NMC and NCA cathodes for lithium-ion batteries[J]. Advanced Materials, 2020, doi: 10.1002/adma.202002718.
doi: 10.1002/adma.202002718 |
8 | RYU H H, PARK N Y, SEO J H, et al. A highly stabilized Ni-rich NCA cathode for high-energy lithium-ion batteries[J]. Materials Today, 2020, 36: 73-82. |
9 | CHEN Q, PEI Y, CHEN H, et al. Highly reversible oxygen redox in layered compounds enabled by surface polyanions[J]. Nature Communications, 2020, 11(1): doi: 10.1038/s41467-020-17126-3. |
10 | SHIMODA K, YAZAWA K, MATSUNAGA T, et al. Sequential delithiation behavior and structural rearrangement of a nanoscale composite-structured Li1.2Ni0.2Mn0.6O2 during charge-discharge cycles[J]. Scientific Reports, 2020, 10(1): doi: 10.1038/s41598-020-66411-0. |
11 | LIU X, TAN Y, WANG W, et al. Conformal prelithiation nanoshell on LiCoO2 enabling high-energy lithium-ion batteries[J]. Nano Letters, 2020, 20(6): 4558-4565. |
12 | HATAKEYAMA-SATO K, AKAHANE T, GO C, et al. Ultrafast charge/discharge by a 99.9% conventional lithium iron phosphate electrode containing 0.1% redox-active fluoflavin polymer[J]. ACS Energy Letters, 2020, 5(5): 1712- 1717. |
13 | LI X, JIANG F, QU K, et al. First atomic-scale insight into degradation in lithium iron phosphate cathodes by transmission electron microscopy[J]. Journal of Physical Chemistry Letters, 2020, 11(12): 4608-4617. |
14 | CHEN J, ZHAO J, LEI L, et al. Dynamic intelligent Cu current collectors for ultrastable lithium metal anodes[J]. Nano Letters, 2020, 20(5): 3403-3410. |
15 |
FU L, WAN M, ZHANG B, et al. A lithium metal anode surviving battery cycling above 200 degrees C[J]. Advanced Materials, 2020, doi: 10.1002/adma.202000952.
doi: 10.1002/adma.202000952 |
16 |
GAO Y, ROJAS T, WANG K, et al. Low-temperature and high-rate-charging lithium metal batteries enabled by an electrochemically active monolayer-regulated interface[J]. Nature Energy, 2020, doi: 10.1038/s41560-020-0640-7.
doi: 10.1038/s41560-020-0640-7 |
17 |
ZHANG L, YIN X, SHEN S, et al. Simultaneously homogenized electric field and ionic flux for reversible ultrahigh-areal-capacity Li deposition[J]. Nano Letters, 2020, doi: 10.1021/acs.nanolett.0c00797.
doi: 10.1021/acs.nanolett.0c00797 |
18 |
ADAIR K R, BANIS M N, ZHAO Y, et al. Temperature-dependent chemical and physical microstructure of Li metal anodes revealed through synchrotron-based imaging techniques[J]. Advanced Materials, 2020, doi: 10.1002/adma.202002550.
doi: 10.1002/adma.202002550 |
19 | FU C, VENTURI V, KIM J, et al. Universal chemomechanical design rules for solid-ion conductors to prevent dendrite formation in lithium metal batteries[J]. Nature Materials, 2020, 19(7): 758-766. |
20 | BAUER D, LUISIER M. Influence of disorder and surface roughness on the electrical and thermal properties of lithiated silicon nanowires[J]. Journal of Applied Physics, 2020, 127(13): doi: 10.1063/5.0002980. |
21 | PELED E, SCHNEIER D, SHAHAM Y, et al. Understanding the spontaneous reactions between oxide-free silicon and lithium-battery electrolytes[J]. Journal of the Electrochemical Society, 2019, 166(10): A2091-A2095. |
22 | LI Z, ZHANG Y, LIU T, et al. Silicon Anode with high initial coulombic efficiency by modulated trifunctional binder for high-areal-capacity lithium-ion batteries[J]. Advanced Energy Materials, 2020, 10(20): doi: 10.1002/aenm.201903110. |
23 |
MA L, MENG J Q, CHENG Y J, et al. Poly(siloxane imide) binder for silicon-based lithium-ion battery anodes via rigidness/softness coupling[J]. Chemistry, an Asian Journal, 2020, doi: 10.1002/asia.202000633.
doi: 10.1002/asia.202000633 |
24 | SCHNABEL M, HARVEY S P, ARCA E, et al. Surface SiO2 thickness controls uniform-to-localized transition in lithiation of silicon anodes for lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2020, 12(24): 27017-27028. |
25 | TOIGO C, ARBIZZANI C, PETTINGER K H, et al. Study on different water-based binders for Li4Ti5O12 electrodes[J]. Molecules, 2020, 25(10): doi: 10.3390/molecules25102443. |
26 | BOEBINGER M G, YAREMA O, YAREMA M, et al. Spontaneous and reversible hollowing of alloy anode nanocrystals for stable battery cycling[J]. Nature Nanotechnology, 2020, 15(6): 475-481. |
27 | ARNOLD W, BUCHBERGER D A, LI Y, et al. Halide doping effect on solvent-synthesized lithium argyrodites Li6PS5X (X=Cl, Br, I) superionic conductors[J]. Journal of Power Sources, 2020, 464: doi: 10.1016/j.jpowsour.2020.228158. |
28 | KATAOKA K. Oxide single crystals with high lithium-ion conductivity as solid electrolytes for all-solid-state lithium secondary battery applications[J]. Journal of the Ceramic Society of Japan, 2020, 128(1): 7-18. |
29 | AHMAD N, ZHOU L, FAHEEM M, et al. Enhanced air stability and high Li-ion conductivity of Li6.988P2.994Nb0.2S10.934O0.6 glass-ceramic electrolyte for all-solid-state lithium-sulfur batteries[J]. ACS Applied Materials & Interfaces, 2020, 12(19): 21548-21558. |
30 |
OTOYAMA M, SAKUDA A, TATSUMISAGO M, et al. Sulfide electrolyte suppressing side reactions in composite positive electrodes for all-solid-state lithium batteries[J]. ACS Applied Materials & Interfaces, 2020, doi: 10.1021/acsami.0c05050.
doi: 10.1021/acsami.0c05050 |
31 | BRINEK M, HIEBL C, WILKENING H M R. Understanding the origin of enhanced Li-ion transport in nanocrystalline argyrodite-type Li6PS5I[J]. Chemistry of Materials : A publication of the American Chemical Society, 2020, 32(11): 4754-4766. |
32 | JIANG H, HAN Y, WANG H, et al. Li2S-Li3PS4 (LPS) composite synthesized by liquid-phase shaking for all-solid-state lithium-sulfur batteries with high performance[J]. Energy Technology, 2020, 8(6): doi: 10.1002/ente.202000023. |
33 |
MINAFRA N, KRAFT M A, BERNGES T, et al. Local charge inhomogeneity and lithium distribution in the superionic argyrodites Li6PS5X (X=Cl, Br, I)[J]. Inorganic Chemistry, 2020, doi: 10.1021/acs.inorgchem.0c01504.
doi: 10.1021/acs.inorgchem.0c01504 |
34 | MUKRA T, PELED E. Elucidation of the losses in cycling lithium-metal anodes in carbonate-based electrolytes[J]. Journal of the Electrochemical Society, 2020, 167(10): doi:10.1149/1945-7111/ab981b. |
35 |
LIU H, NAYLOR A J, MENON A S, et al. Understanding the roles of tris(trimethylsilyl) phosphite (TMSPi) in LiNi0.8Mn0.1Co0.1O2 (NMC811)/silicon-graphite (Si-Gr) lithium-ion batteries[J]. Advanced Materials Interfaces, 2020, doi: 10.1002/admi.202000277.
doi: 10.1002/admi.202000277 |
36 | HAGOS T T, SU W N, HUANG C J, et al. Developing high-voltage carbonate-ether mixed electrolyte via anode-free cell configuration[J]. Journal of Power Sources, 2020, 461: doi: 10.1016/j.jpowsour.2020.228053. |
37 | JOTE B A, BEYENE T T, SAHALIE N A, et al. Effect of diethyl carbonate solvent with fluorinated solvents as electrolyte system for anode free battery[J]. Journal of Power Sources, 2020, 461: doi: 10.1016/j.jpowsour.2020.228102. |
38 |
CHEN J, FAN X, LI Q, et al. Electrolyte design for LiF-rich solid-electrolyte interfaces to enable high-performance microsized alloy anodes for batteries[J]. Nature Energy, 2020, doi: 10.1038/s41560-020-0601-1.
doi: 10.1038/s41560-020-0601-1 |
39 | BJORKLUND E, GOTTLINGER M, EDSTROM K, et al. Sulfolane-based ethylene carbonate-free electrolytes for LiNi0.6Mn0.2Co0.2O2-Li4Ti5O12 batteries[J]. Batteries & Supercaps, 2020, 3(2): 201-207. |
40 | HOLOUBEK J, YU M, YU S, et al. An all-fluorinated ester electrolyte for stable high-voltage Li metal batteries capable of ultra-low-temperature operation[J]. ACS Energy Letters, 2020, 5(5): 1438-1447. |
41 | HAN J G, HWANG E, KIM Y, et al. Dual-functional electrolyte additives toward long-cycling lithium-ion batteries: Ecofriendly designed carbonate derivatives[J]. ACS Applied Materials & Interfaces, 2020, 12(21): 24479-24487. |
42 | ZOU Y, SHEN Y, WU Y, et al. A Designed durable electrolyte for high-voltage lithium-ion batteries and mechanism analysis[J]. Chemistry-a European Journal, 2020, 26(35): 7930-7936. |
43 | HAN J G, HWANG C, KIM S H, et al. An antiaging electrolyte additive for high-energy-density lithium-ion batteries[J]. Advanced Energy Materials, 2020,10(20): doi: 10.1002/aenm.202000563. |
44 |
DUAN K, NING J, ZHOU L, et al. 1-(2-Cyanoethyl)pyrrole enables excellent battery performance at high temperature via the synergistic effect of Lewis base and C triple bond, length as m-dash N functional groups[J]. Chemical Communications (Cambridge, England), 2020, doi: 10.1039/d0cc01528h.
doi: 10.1039/d0cc01528h |
45 | GLASER R, WU F, REGISTER E, et al. Tuning low concentration electrolytes for high rate performance in lithium-sulfur batteries[J]. Journal of the Electrochemical Society, 2020, 167(10): doi: 10.1149/1945-7111/ab7183. |
46 | GU Y, FANG S, ZHANG X, et al. A non-flammable electrolyte for lithium-ion batteries containing lithium difluoro(oxalato)borate, propylene carbonate and tris(2,2,2-trifluoroethyl)phosphate[J]. Journal of the Electrochemical Society, 2020, 167(8): doi: 10.1149/1945-7111/ab8ed3. |
47 | HAN X, SUN J. Design of a LiF-rich solid electrolyte interface layer through salt-additive chemistry for boosting fast-charging phosphorus-based lithium ion battery performance[J]. Chemical Communications (Cambridge, England), 2020, 56(45): 6047-6049. |
48 |
MA Q, ZHANG X, WANG A, et al. Stabilizing solid electrolyte interphases on both anode and cathode for high areal capacity, high-voltage lithium metal batteries with high li utilization and lean electrolyte[J]. Advanced Functional Materials, 2020, doi: 10.1002/adfm.202002824.
doi: 10.1002/adfm.202002824 |
49 | SUN H, ZHU G, ZHU Y, et al. High-safety and high-energy-density lithium metal batteries in a novel ionic-liquid electrolyte[J]. Advanced Materials, 2020, 32(26): doi: 10.1002/adma.202001741. |
50 | KIM Y K, KIM Y, BAE J, et al. Implanting a preferential solid electrolyte interphase layer over anode electrode of lithium ion batteries for highly enhanced Li plus diffusion properties[J]. Journal of Energy Chemistry, 2020,48:285-92. |
51 | FENG W, LAI Z, DONG X, et al. Garnet-based all-ceramic lithium battery enabled by Li2.985B0.005OCl solder[J]. Iscience, 2020, 23(5): doi: 10.1016/j.isci.2020.101071. |
52 | LIU Q, ZHOU D, SHANMUKARAJ D, et al. Self-healing janus interfaces for high-performance LAGP-based lithium metal batteries[J]. ACS Energy Letters, 2020, 5(5): 1456-1464. |
53 | JAUMAUX P, LIU Q, ZHOU D, et al. Deep-eutectic-solvent-based self-healing polymer electrolyte for safe and long-life lithium-metal batteries[J]. Angewandte Chemie-International Edition, 2020, 59(23): 9134-9142. |
54 | KIM M J, PARK J W, KIM B G, et al. Facile fabrication of solution-processed solid-electrolytes for high-energy-density all-solid-state-batteries by enhanced interfacial contact[J]. Scientific Reports, 2020, 10(1): doi: 10.1038/s41598-020-68885-4. |
55 | CHENG Z, XIE M, MAO Y, et al. Building lithiophilic ion-conduction highways on garnet-type solid-state Li+ conductors[J]. Advanced Energy Materials, 2020, 10(24): doi: 10.1002/aenm.201904230. |
56 |
YUE J, HUANG Y, LIU S, et al. Rational designed mixed-conductive sulfur cathodes for all-solid-state lithium batteries[J]. ACS Applied Materials & Interfaces, 2020, doi: 10.1021/acsami.0c08564.
doi: 10.1021/acsami.0c08564 |
57 | DENG T, JI X, ZHAO Y, et al. Tuning the anode-electrolyte interface chemistry for garnet-based solid-state Li metal batteries[J]. Advanced Materials, 2020, 32(23): doi: 10.1002/adma.202000030. |
58 | SHI K, WAN Z, YANG L, et al. In situ construction of an ultra-stable conductive composite interface for high-voltage all-solid-state lithium metal batteries[J]. Angewandte Chemie-International Edition, 2020, 59(29): 11784-11788. |
59 | DUAN L, KONG W, YAN W, et al. Improving the capacity and cycling-stability of Lithium-sulfur batteries using self-healing binders containing dynamic disulfide bonds[J]. Sustainable Energy & Fuels, 2020, 4(6): 2760-2767. |
60 | LI S, JIANG J, DONG Z, et al. Ferroconcrete-inspired construction of self-supporting Li2S cathode for high-performance lithium-sulfur batteries[J]. Microporous and Mesoporous Materials, 2020, 293: doi: 10.1016/j.micromeso.2019.109822. |
61 |
LU C, CHEN Y, YANG Y, et al. Single-atom catalytic materials for lean-electrolyte ultrastable lithium-sulfur batteries[J]. Nano Letters, 2020, doi: 10.1021/acs.nanolett.0c02167.
doi: 10.1021/acs.nanolett.0c02167 |
62 | TAMATE R, SARUWATARI A, NAKANISHI A, et al. Excellent dispersibility of single-walled carbon nanotubes in highly concentrated electrolytes and application to gel electrode for Li-S batteries[J]. Electrochemistry Communications, 2019, 109: doi: 10.1016/j.elecom.2019.106598. |
63 | YANG T, LIU K, REN R, et al. Uniform growth of Li2S promoted by an organophosphorus-based mediator for high rate Li-S batteries[J]. Chemical Engineering Journal, 2020, 381: doi: 10.1016/j.cej.2019.122685. |
64 | ZHAO M, PENG H J, LI B Q, et al. Electrochemical phase evolution of metal-based pre-catalysts for high-rate polysulfide conversion[J]. Angewandte Chemie-International Edition, 2020, 59(23): 9011-9017. |
65 | NANDA S, BHARGAV A, MANTHIRAM A. Anode-free, lean-electrolyte lithium-sulfur batteries enabled by tellurium-stabilized lithium deposition[J]. Joule, 2020, 4(5): 1121-1135. |
66 |
ZHAO C, XU G L, ZHAO T, et al. Beyond polysulfides shuttle and Li dendrite formation: Addressing the sluggish S redox kinetics for practical high energy Li-S batteries[J]. Angewandte Chemie (International ed in English), 2020, doi: 10.1002/anie.202007159.
doi: 10.1002/anie.202007159 |
67 | ZHOU S, LIU J, XIE F, et al. A "boxes in fibers" strategy to construct a necklace-like conductive network for high-rate and high-loading lithium-sulfur batteries[J]. Journal of Materials Chemistry A, 2020, 8(22): 11327-11336. |
68 | SUN Z, VIJAY S, HEENEN H H, et al. Catalytic polysulfide conversion and physiochemical confinement for lithium-sulfur batteries[J]. Advanced Energy Materials, 2020, 10(22): doi: 10.1002/aenm.201904010. |
69 | ZHOU S, YANG S, DING X, et al. Dual-regulation strategy to improve anchoring and conversion of polysulfides in lithium-sulfur batteries[J]. ACS Nano, 2020, 14(6): 7538-7551. |
70 |
DELAPORTE N, DARWICHE A, LEONARD M, et al. Facile formulation and fabrication of the cathode using a self-lithiated carbon for all-solid-state batteries[J]. Scientific Reports, 2020, doi: 10.1038/s41598-020-68865-8.
doi: 10.1038/s41598-020-68865-8 |
71 | NOMURA Y, YAMAMOTO K, FUJII M, et al. Dynamic imaging of lithium in solid-state batteries by operando electron energy-loss spectroscopy with sparse coding[J]. Nature Communications, 2020,11(1): doi: 10.1038/s41467-020-16622-w. |
72 |
WANG Z, TANG Y, ZHANG L, et al. In situ TEM observations of discharging/charging of solid-state lithium-sulfur batteries at high temperatures[J]. Small, 2020, doi: 10.1002/smll.202001899.
doi: 10.1002/smll.202001899 |
73 |
JUN S, NAM Y J, KWAK H, et al. Operando differential electrochemical pressiometry for probing electrochemo-mechanics in all-solid-state batteries[J]. Advanced Functional Materials, 2020, doi: 10.1002/adfm.202002535.
doi: 10.1002/adfm.202002535 |
74 | CADIOU F, DOUILLARD T, BESNARD N, et al. Multiscale characterization of composite electrode microstructures for high density lithium-ion batteries guided by the specificities of their electronic and ionic transport mechanisms[J]. Journal of the Electrochemical Society, 2020, 167(10): doi: 10.1149/1945-7111/ab975a. |
75 |
YU C, LIN X, CHEN X, et al. Suppressing the side reaction by a selective blocking layer to enhance the performance of Si-based anodes[J]. Nano Letters, 2020, doi: 10.1021/acs.nanolett.0c01394.
doi: 10.1021/acs.nanolett.0c01394 |
76 | KIMURA Y, TOMURA A, FAKKAO M, et al. 3D operando imaging and quantification of inhomogeneous electrochemical reactions in composite battery electrodes[J]. Journal of Physical Chemistry Letters, 2020, 11(9): 3629-3636. |
77 | WEBER R, LOULI A J, PLUCKNETT K P, et al. Resistance growth in lithium-ion pouch cells with LiNi0.80Co0.15Al0.05O2 positive electrodes and proposed mechanism for voltage dependent charge-transfer resistance[J]. Journal of the Electrochemical Society, 2019, 166(10): A1779-A1784. |
78 | GENG L, WOOD D L, LEWIS S A, et al. High accuracy in-situ direct gas analysis of Li-ion batteries[J]. Journal of Power Sources, 2020, 466: doi: 10.1016/j.jpowsour.2020.228211. |
79 |
LEISSING M, WINTER M, WIEMERS-MEYER S, et al. A method for quantitative analysis of gases evolving during formation applied on LiNi0.6Mn0.2Co0.2O2 parallel to natural graphite lithium ion battery cells using gas chromatography-barrier discharge ionization detector[J]. Journal of Chromatography A, 2020, doi: 10.1016/j.chroma.2020.461122.
doi: 10.1016/j.chroma.2020.461122 |
80 | DIXIT M B, ZAMAN W, HORTANCE N, et al. Nanoscale mapping of extrinsic interfaces in hybrid solid electrolytes[J]. Joule, 2020, 4(1): 207-2021. |
81 | OTOYAMA M, ITO Y, SAKUDA A, et al. Reaction uniformity visualized by Raman imaging in the composite electrode layers of all-solid-state lithium batteries[J]. Physical Chemistry Chemical Physics, 2020, 22(23): 13271-13276. |
82 | BASAK S, MIGUNOV V, TAVABI A H, et al. Operando transmission electron microscopy study of all-solid-state battery interface: Redistribution of lithium among interconnected particles[J]. ACS Applied Energy Materials, 2020, 3(6): 5101-5106. |
83 | MCSHANE E J, COLCLASURE A M, BROWN D E, et al. Quantification of inactive lithium and solid-electrolyte interphase species on graphite electrodes after fast charging[J]. ACS Energy Letters, 2020, 5(6): 2045-2051. |
84 | CHIKU M, OTA K, HIGUCHI E, et al. Microband-array electrode technique for the detection of reaction distributions in the depth direction of composite electrodes for the all-solid-state lithium-ion batteries[J]. ACS OMEGA, 2020, 5(27): 16739-16743. |
85 | LI X, GUAN H, MA Z, et al. In/ex-situ Raman spectra combined with EIS for observing interface reactions between Ni-rich layered oxide cathode and sulfide electrolyte[J]. Journal of Energy Chemistry, 2020, 48: 195-202. |
86 | FATHIANNASAB H, GHORBANI KASHKOOLI A, LI T, et al. Three-dimensional modeling of all-solid-state lithium-ion batteries using synchrotron transmission X-ray microscopy tomography[J]. Journal of the Electrochemical Society, 2020, 167(10): doi: 10.1149/1945-7111/ab9380. |
87 | NOMURA Y, YAMAMOTO K, HIRAYAMA T, et al. Visualization of lithium transfer resistance in secondary particle cathodes of bulk-type solid-state batteries[J]. ACS Energy Letters, 2020, 5(6): 2098-2105. |
88 | OSWALD S, PRITZL D, WETJEN M, et al. Novel method for monitoring the electrochemical capacitance by in situ impedance spectroscopy as indicator for particle cracking of nickel-rich NCMs: Part I. theory and validation[J]. Journal of the Electrochemical Society, 2020, 167(10): doi: 10.1149/1945-7111/ab9187. |
89 | TONIN G, VAUGHAN G B M, BOUCHET R, et al. Operando investigation of the lithium/sulfur battery system by coupled X-ray absorption tomography and X-ray diffraction computed tomography[J]. Journal of Power Sources, 2020, 468: doi: 10.1016/j.jpowsour.2020.228287. |
90 | HAYAKAWA S, KANEDA A, MORI T, et al. Ti K-edge XAFS investigation of lithium migration in lithium titanium oxide anode material under charge and discharge cycle[J]. Radiation Physics and Chemistry, 2020, 175: doi: 10.1016/j.radphyschem.2018.12.030. |
91 | KIM Y. Minimum Co content limit in layer-structured cathode materials for Li-ion batteries[J]. Journal of Power Sources, 2020,467. |
92 |
KRAUSKOPF T, MOGWITZ B, HARTMANN H, et al. The fast charge transfer kinetics of the lithium metal anode on the garnet-type solid electrolyte Li6.25Al0.25La3Zr2O12[J]. Advanced Energy Materials, 2020, doi: 10.1002/aenm.202000945.
doi: 10.1002/aenm.202000945 |
93 | KAMPHAUS E P, GOMEZ S A, QIN X, et al. Effects of solid electrolyte interphase components on the reduction of LiFSI over lithium metal[J]. Chemphyschem, 2020, 21(12): 1310-1317. |
94 | MAI W, COLCLASURE A M, SMITH K. Model-instructed design of novel charging protocols for the extreme fast charging of lithium-ion batteries without lithium plating[J]. Journal of the Electrochemical Society, 2020, 167(8): doi: 10.1149/1945-7111/ab8c84. |
95 | MISTRY A, USSEGLIO-VIRETTA F L E, COLCLASURE A, et al. Fingerprinting redox heterogeneity in electrodes during extreme fast charging[J]. Journal of the Electrochemical Society, 2020, 167(9): doi: 10.1149/1945-7111/ab8fd7. |
96 | DATTA M K, GATTU B, KURUBA R, et al. Constitutional under-potential plating (CUP)—New insights for predicting the morphological stability of deposited lithium anodes in lithium metal batteries[J]. Journal of Power Sources, 2020, 467: doi: 10.1016/j.jpowsour.2020.228243. |
97 | HAN B, FENG D, LI S, et al. Self-regulated phenomenon of inorganic artificial solid electrolyte interphase for lithium metal batteries[J]. Nano Letters, 2020, 20(5): 4029-4037. |
98 |
ZHONG Y, XIE Y, HWANG S, et al. A highly efficient all-solid-state lithium/electrolyte interface induced by an energetic reaction[J]. Angewandte Chemie-International Edition, 2020, doi: 10.1002/anie.202004477.
doi: 10.1002/anie.202004477 |
99 | LEE D C, LEE K J, KIM C W. Optimization of a lithium-ion battery for maximization of energy density with design of experiments and micro-genetic algorithm[J]. International Journal of Precision Engineering and Manufacturing-Green Technology, 2020, 7(4): 829-836. |
100 | FITZHUGH W, WU F, YE L, et al. Strain-stabilized ceramic-sulfide electrolytes[J]. Small, 2019, 15(33): doi: 10.1002/smll.201901470. |
[1] | 时雨, 张忠, 杨晶莹, 钱薇, 李昊, 赵祥, 杨欣桐. 储能电池系统提供AGC调频的机会成本建模与市场策略[J]. 储能科学与技术, 2022, 11(7): 2366-2373. |
[2] | 元佳宇, 李昕光, 王文超, 付程阔. 考虑质量流量的电池组蛇形冷却结构仿真[J]. 储能科学与技术, 2022, 11(7): 2274-2281. |
[3] | 黄鹏, 聂枝根, 陈峥, 舒星, 沈世全, 杨继鹏, 申江卫. 基于优化Elman神经网络的锂电池容量预测[J]. 储能科学与技术, 2022, 11(7): 2282-2294. |
[4] | 张肖洒, 王宏源, 李振彪, 夏志美. 废旧磷酸铁锂电池电极材料的硫酸化焙烧-水浸新工艺[J]. 储能科学与技术, 2022, 11(7): 2066-2074. |
[5] | 徐雄文, 聂阳, 涂健, 许峥, 谢健, 赵新兵. 普鲁士蓝正极软包钠离子电池的滥用性能[J]. 储能科学与技术, 2022, 11(7): 2030-2039. |
[6] | 裴英伟, 张红, 王星辉. 可充电锌离子电池电解质的研究进展[J]. 储能科学与技术, 2022, 11(7): 2075-2082. |
[7] | 霍思达, 薛文东, 李新丽, 李勇. 基于CiteSpace知识图谱的锂电池复合电解质可视化分析[J]. 储能科学与技术, 2022, 11(7): 2103-2113. |
[8] | 申晓宇, 岑官骏, 乔荣涵, 朱璟, 季洪祥, 田孟羽, 金周, 闫勇, 武怿达, 詹元杰, 俞海龙, 贲留斌, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2022.4.1—2022.5.31)[J]. 储能科学与技术, 2022, 11(7): 2007-2022. |
[9] | 周伟东, 黄秋, 谢晓新, 陈科君, 李薇, 邱介山. 固态锂电池聚合物电解质研究进展[J]. 储能科学与技术, 2022, 11(6): 1788-1805. |
[10] | 李一涛, 沈凯尔, 庞全全. 有机物辅助的硫化物电解质基固态电池[J]. 储能科学与技术, 2022, 11(6): 1902-1918. |
[11] | 周伟, 符冬菊, 刘伟峰, 陈建军, 胡照, 曾燮榕. 废旧磷酸铁锂动力电池回收利用研究进展[J]. 储能科学与技术, 2022, 11(6): 1854-1864. |
[12] | 张浩然, 车海英, 郭凯强, 申展, 张云龙, 陈航达, 周煌, 廖建平, 刘海梅, 马紫峰. Sn掺杂NaNi1/3Fe1/3Mn1/3-x Sn x O2 正极材料制备及其电化学性能[J]. 储能科学与技术, 2022, 11(6): 1874-1882. |
[13] | 张言, 王海, 刘朝孟, 张德柳, 王佳东, 李建中, 高宣雯, 骆文彬. 锂离子电池富镍三元正极材料NCM的研究进展[J]. 储能科学与技术, 2022, 11(6): 1693-1705. |
[14] | 乔荣涵, 岑官骏, 申晓宇, 田孟羽, 季洪祥, 田丰, 起文斌, 金周, 武怿达, 詹元杰, 闫勇, 贲留斌, 俞海龙, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2022.2.1—2022.3.31)[J]. 储能科学与技术, 2022, 11(5): 1289-1304. |
[15] | 汪红辉, 吴泽钦, 储德韧. 轻度过放模式下钛酸锂电池性能及热安全性[J]. 储能科学与技术, 2022, 11(5): 1305-1313. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||