1 |
LU Languang, HAN Xuebing, LI Jianqiu, et al. A review on the key issues for lithium-ion battery management in electric vehicles[J]. Journal of Power Sources, 2013, 226: 272-288.
|
2 |
GOODENOUGH J B. Energy storage materials: A perspective[J]. Energy Storage Materials, 2015, 1: 158-161.
|
3 |
克里斯汀·朱利恩, 阿肖克·维志, 卡里姆·扎赫伯. 锂电池科学与技术[M]. 北京: 化学工业出版社, 2018.
|
|
JULIEN C, VIJH A, ZAGHIB K. Lithium Batteries: Science and Technology[M]. Beijing: Chemical Industry Press, 2018.
|
4 |
LEE Gibaek, KIM Sudeok, KIM Sunkyu, et al. SiO2/TiO2 composite film for high capacity and excellent cycling stability in lithium-ion battery anodes[J]. Advanced Functional Materials, 2017, 27(39): doi:10.1002/adfm.201703538.
|
5 |
VETTER J, NOVAK P, WAGNER M R, et al. Ageing mechanisms in lithium-ion batteries[J]. Journal of Power Sources, 2005, 147(1/2): 269-281.
|
6 |
王其钰, 王朔, 张杰男, 等. 锂离子电池失效分析概述[J]. 储能科学与技术, 2017, 6(5): 1008-1025.
|
|
WANG Qiyu, WANG Shuo, ZHANG Jienan, et al. Overview of failure analysis of lithium-ion batteries[J]. Energy Storage Science and Technology, 2017, 6(5): 1008-1025.
|
7 |
BARRE A, DEGUILHEM B, GROLLEAU S, et al. A review on lithium-ion battery ageing mechanisms and estimations for automotive applications[J]. Journal of Power Sources, 2013, 241: 680-689.
|
8 |
HAN Xuebing, OUYANG Minggao, LU Languang, et al. A comparative study of commercial lithium ion battery cycle life in electrical vehicle: Aging mechanism identification[J]. Journal of Power Sources, 2014, 251: 38-54.
|
9 |
SCROSATI B, GARCHE J. Lithium batteries: Status, prospects and future[J]. Journal of Power Sources, 2010, 195(9): 2419-2430.
|
10 |
DINKELACKER F, MARZAK P, YUN Jeongsik, et al. Multistage mechanism of lithium intercalation into graphite anodes in the presence of the solid electrolyte interface[J]. ACS Applied Materials & Interfaces, 2018, 10(16): 14063-14069.
|
11 |
AGUBRA V A, FERGUS J W. The formation and stability of the solid electrolyte interface on the graphite anode[J]. Journal of Power Sources, 2014, 268: 153-162.
|
12 |
赵星. 锂离子动力电池电极材料失效分析及电极界面特性研究[D]. 北京: 中国矿业大学, 2015.
|
|
ZHAO Xing. Failure analysis and electrode interface charaderistics on the electrode materials for lithium-ion power batteries[D]. Beijing: China University of Mining and Technology, 2015.
|
13 |
YAN Chong, YAO Yuxing, CAI Wenlong, et al. The influence of formation temperature on the solid electrolyte interphase of graphite in lithium ion batteries[J]. Journal of Energy Chemistry, 2020, 49: 335-338.
|
14 |
CHEN Kunfeng, YANG Hong, LIANG Feng, et al. Microwave-irradiation-assisted combustion toward modified graphite as lithium ion battery anode[J]. ACS Applied Materials & Interfaces, 2018, 10(1): 909-914.
|
15 |
LIN Na, JIA Zhe, WANG Zhihui, et al. Understanding the crack formation of graphite particles in cycled commercial lithium-ion batteries by focused ion beam-scanning electron microscopy[J]. Journal of Power Sources, 2017, 365: 235-239.
|
16 |
LI Xianglin, HUANG Jing, FAGHIRI A. A critical review of macroscopic modeling studies on LiO2 and Li-air batteries using organic electrolyte: Challenges and opportunities[J]. Journal of Power Sources, 2016, 332: 420-446.
|
17 |
DING Yajun, LI Yuejiao, WU Min, et al. Recent advances and future perspectives of two-dimensional materials for rechargeable Li-O2 batteries[J]. Energy Storage Materials, 2020, 1308: 470-491.
|
18 |
KUMAR R, LIU J, HWANG J Y, et al. Recent research trends in Li-S batteries[J]. Journal of Materials Chemistry A, 2018, 6(25): 11582-11605.
|
19 |
SHAO Qinjun, WU Zhongshuai, CHEN Jian. Two-dimensional materials for advanced Li-S batteries[J]. Energy Storage Materials, 2019, 22: 284-310.
|
20 |
杨丽杰. 锂离子电池石墨类碳负极的容量衰减机制研究[D]. 哈尔滨: 哈尔滨工业大学, 2014.
|
|
YANG Lijie. Research on capacity loss mechanisms of graphitic carbon anodes in lithium[D]. Harbin: Harbin Institute of Technology, 2014.
|
21 |
BIRKL C R, ROBERTS M R, MCTURK E, et al. Degradation diagnostics for lithium ion cells[J]. Journal of Power Sources, 2017, 341: 373-386.
|
22 |
ARMAND M, TARASCON J M. Building better batteries[J]. Nature, 2008, 451(7179): 652-657.
|
23 |
ZHU Fuliang, YANG Zhi, ZHAO Jinping. Microwave assisted preparation of expanded graphite/sulfur composites as cathodes for Li-S batteries[J]. New Carbon Materials, 2016, 31: 199-204.
|
24 |
VOIRY D, YANG J, KUPFERBERG J, et al. High-quality graphene via microwave reduction of solution-exfoliated graphene oxide[J]. Science, 2016, 353: 1413-1416.
|
25 |
HENG Shuai, SHAN Xiaojian, WANG Wei, et al. Controllable solid electrolyte interphase precursor for stabilizing natural graphite anode in lithium ion batteries[J]. Carbon, 2020, 159: 390-400.
|
26 |
WANG Zaisheng, XING Lidan, LI Jianhui, et al. Trimethyl borate as an electrolyte additive for high potential layered cathode with concurrent improvement of rate capability and cyclic stability[J]. Electrochimica Acta, 2015, 184: 40-46.
|
27 |
CHENG Xinbing, ZHANG Rui, ZHAO Chenzi, et al. Toward safe lithium metal anode in rechargeable batteries: A review[J]. Chemical Reviews, 2017, 117(15): 10403-10473
|
28 |
GONG Xiaohui, ZHENG Yuanbo, ZHENG Jiang, et al. Surface-functionalized graphite as long cycle life anode materials for lithium-ion batteries[J]. ChemElectroChem, 2020, 7(6): 1465-1472.
|
29 |
WU Yuping, JIANG Changyin, WAN Chunrong, et al. Modified natural graphite as anode material for lithium ion batteries[J]. Journal of Power Sources, 2002, 111(2): 329-334.
|
30 |
FU Lijun, LIU Hao, LI Chilin, et al. Surface modifications of electrode materials for lithium ion batteries[J]. Solid State Sciences, 2006, 8: 113-128.
|
31 |
GAO Jie, FU Lijun, ZHANG Hanping, et al. Suppression of PC decomposition at the surface of graphitic carbon by Cu coating[J]. Electrochemistry Communications, 2006, 8(11): 1726-1730.
|
32 |
NOBILI F, MANCINI M, DSOKE S, et al. Low-temperature behavior of graphite-tin composite anodes for Li-ion batteries[J]. Journal of Power Sources, 2010, 195(20): 7090-7097.
|
33 |
ARAVINDAN V, GNANARAJ J, MADHAVI S, et al. Lithium-ion conducting electrolyte salts for lithium batteries[J]. Chemistry, 2011, 17(51): 14326-14346.
|
34 |
RYOU Myunghyun, HAN Gibeom, LEE Yongmin, et al. Effect of fluoroethylene carbonate on high temperature capacity retention of LiMn2O4/graphite Li-ion cells[J]. Electrochim Acta, 2010, 55(6): 2073-2077.
|
35 |
XU Yun, LIU Jiali, ZHOU Lan, et al. FEC as the additive of 5 V electrolyte and its electrochemical performance for LiNi0.5Mn1.5O4[J]. Journal of Electroanalytical Chemistry, 2017, 791: 109-116.
|
36 |
BERHAUT C, LEMORDANT D, PORION P. et al. Ionic association analysis of LiTDI, LiFSI and LiPF6 in EC/DMC for better Li-ion battery performances[J]. RSC Advances, 2019, 9(8): 4599-4608.
|
37 |
KANG Sungjin, PARK Kisung, PARK Seonghyo, et al. Unraveling the role of LiFSI electrolyte in the superior performance of graphite anodes for Li-ion batteries[J]. Electrochimica Acta, 2018, 259: 949-954.
|
38 |
YAMADA Y, WANG Jianhui, KO Seongjae, et al. Advances and issues in developing salt-concentrated battery electrolytes[J]. Nature Energy, 2019: 269-280.
|
39 |
XIANG Li, OU Xuewu, WANG Xingyong, et al. Highly concentrated electrolyte towards enhanced energy density and cycling life of dual-ion battery[J]. Angewandte Chemie International Edition, 2020, 59(41): 17924-17930.
|
40 |
CHEN Zhongyi, LIU Yan, ZHANG Yanzong, et al. Ultrafine layered graphite as an anode material for lithium ion batteries[J]. Materials Letters, 2018, 229: 134-137.
|
41 |
GOLMON S, MAUTE K, DUNN M. A design optimization methodology for Li-ion batteries[J]. Journal of Power Sources, 2014; 253: 239-250.
|
42 |
DAI Yiling. On graded electrode porosity as a design tool for improving the energy density of batteries[J]. Journal of the Electrochemical Society, 2016, 163(3): A406-416.
|
43 |
HEUBNER C, NICKOL A, SEEBA J, et al. Michaelis, understanding thickness and porosity effects on the electrochemical performance of LiNi0.6Co0.2Mn0.2O2-based cathodes for high energy Li-ion batteries[J]. Journal of Power Sources, 2019, 419: 119-126.
|
44 |
KUANG Yudi, CHEN Chaoji, KIRSCH D, et al. Thick electrode batteries: Principles, opportunities, and challenges[J]. Advanced Energy Materials, 2019, 9(33): doi:10.1002/aenm.201901457.
|
45 |
邵丹, 王媛, 唐贤文, 等. 锂离子电池用新型黏结剂研究进展[J]. 化工新型材料, 2018, 46(11): 252-255.
|
|
SHAO Dan, WANG Yuan, TANG Xianwen, et al. Research progress of new binder for lithium ion battery[J]. New Chemical Materials, 2018, 46(11): 252-255.
|
46 |
CHANG W J, LEE G H, CHEON Y J, et al. Direct observation of carboxymethyl cellulose (CMC) and styrene-butadiene rubber (SBR) binders distribution in practical graphite anodes for Li-ion batteries[J]. ACS Applied Materials & Interfaces, 2019, 41330-41337.
|
47 |
吴春林. 锂离子电池水性黏结剂的制备与性能研究[J]. 四川化工, 2020, 23(4): 1-3+7.
|
|
WU Chunlin. Preparation and properties of water-based binder for lithium ion batteries[J]. Sichuan Chemical Industry, 2020, 23(4): 1-3+7.
|
48 |
ZHANG S, XU K, JOW T R. Evaluation on a water-based binder for the graphite anode of Li-ion batteries[J]. Journal of Power Sources, 2004, 138(1/2): 226-231.
|
49 |
WANG Yan, ZHANG Li, QI Qunting, et al. Tailoring the interplay between ternary composite binder and graphite anodes toward high-rate and long-life Li-ion batteries[J]. Electrochemical Acta, 2016, 191: 70-80.
|
50 |
HUANG Shu, REN Jianguo, LIU Rong, et al. Enhanced electrochemical properties of a natural graphite anode using a promising crosslinked ionomer binder in Li-ion batteries[J]. New Journal of Chemistry, 2017, 41(20): 11759-11765.
|