1 |
WEN Y, ZHANG W J, LU J L. The establishment of safety indicator set of lithium-ion battery and its management system[C]//2015 Prognostics and System Health Management Conference (PHM), Beijing, China, 2015: 1-7.
|
2 |
FENG X N, OUYANG M G, LIU X, et al. Thermal runaway mechanism of lithium ion battery for electric vehicles: A review[J]. Energy Storage Materials, 2018, 10: 246-267.
|
3 |
SPOTNITZ R, FRANKLIN J. Abuse behavior of high-power, lithium-ion cells[J]. Journal of Power Sources, 2003, 113(1): 81-100.
|
4 |
BANDHAUER T M, GARIMELLA S, FULLER T F. A critical review of thermal issues in lithium-ion batteries[J]. Journal of the Electrochemical Society, 2011, 158(3): doi: 10.1149/1.3515880.
|
5 |
LISBONA D, SNEE T. A review of hazards associated with primary lithium and lithium-ion batteries[J]. Process Safety and Environmental Protection, 2011, 89(6): 434-442.
|
6 |
WEN J W, YU Y, CHEN C H. A review on lithium-ion batteries safety issues: Existing problems and possible solutions[J]. Materials Express, 2012, 2(3): 197-212.
|
7 |
AL HALLAJ S, MALEKI H, HONG J S, et al. Thermal modeling and design considerations of lithium-ion batteries[J]. Journal of Power Sources, 1999, 83(1/2): 1-8.
|
8 |
KIM G H, PESARAN A, SPOTNITZ R. A three-dimensional thermal abuse model for lithium-ion cells[J]. Journal of Power Sources, 2007, 170(2): 476-489.
|
9 |
SAHRAEI E, CAMPBELL J, WIERZBICKI T. Modeling and short circuit detection of 18650 Li-ion cells under mechanical abuse conditions[J]. Journal of Power Sources, 2012, 220: 360-372.
|
10 |
COMAN P T, DARCY E C, VEJE C T, et al. Modelling Li-ion cell thermal runaway triggered by an internal short circuit device using an efficiency factor and Arrhenius formulations[J]. Journal of the Electrochemical Society, 2017, 164(4): A587-A593.
|
11 |
ZHAO W, LUO G, WANG C Y. Modeling nail penetration process in large-format Li-ion cells[J]. Journal of the Electrochemical Society, 2014, 162(1): A207-A217.
|
12 |
FENG X N, FANG M, HE X M, et al. Thermal runaway features of large format prismatic lithium ion battery using extended volume accelerating rate calorimetry[J]. Journal of Power Sources, 2014, 255: 294-301.
|
13 |
GUO G F, LONG B, CHENG B, et al. Three-dimensional thermal finite element modeling of lithium-ion battery in thermal abuse application[J]. Journal of Power Sources, 2010, 195(8): 2393-2398.
|
14 |
REN D S, FENG X N, LU L G, et al. An electrochemical-thermal coupled overcharge-to-thermal-runaway model for lithium ion battery[J]. Journal of Power Sources, 2017, 364: 328-340.
|
15 |
HAN X B, OUYANG M G, LU L G, et al. A comparative study of commercial lithium ion battery cycle life in electric vehicle: Capacity loss estimation[J]. Journal of Power Sources, 2014, 268: 658-669.
|
16 |
LIU G M, OUYANG M G, LU L G, et al. Analysis of the heat generation of lithium-ion battery during charging and discharging considering different influencing factors[J]. Journal of Thermal Analysis and Calorimetry, 2014, 116(2): 1001-1010.
|
17 |
MIER F A, MORALES R, COULTAS-MCKENNEY C A, et al. Overcharge and thermal destructive testing of lithium metal oxide and lithium metal phosphate batteries incorporating optical diagnostics[J]. Journal of Energy Storage, 2017, 13: 378-386.
|
18 |
PENG P, SUN Y Q, JIANG F M. Thermal analyses of LiCoO2 lithium-ion battery during oven tests[J]. Heat and Mass Transfer, 2014, 50(10): 1405-1416.
|
19 |
冯旭宁. 车用锂离子动力电池热失控诱发与扩展机理、建模与防控[D]. 北京: 清华大学, 2016.
|
|
FENG X N. Thermal runaway initiation and propagation of lithium-ion traction battery for electric vehicle: Test, modeling and prevention[D]. Beijing: Tsinghua University, 2016.
|
20 |
FENG X N, HE X M, OUYANG M G, et al. Thermal runaway propagation model for designing a safer battery pack with 25 A.h LiNixCoyMnzO2 large format lithium ion battery[J]. Applied Energy, 2015, 154: 74-91.
|
21 |
WANG H Y, TANG A D, HUANG K L. Oxygen evolution in overcharged LixNi1/3Co113Mn1/3O2 electrode and its thermal analysis kinetics[J]. Chinese Journal of Chemistry, 2011, 29(8): 1583-1588.
|