1 |
LI X X, ZHOU D Q, ZHANG G Q, et al. Experimental investigation of the thermal performance of silicon cold plate for battery thermal management system[J]. Applied Thermal Engineering, 2019, 155: 331-340.
|
2 |
AL-ZAREER M, DINCER I, ROSEN M A. Novel thermal management system using boiling cooling for high-powered lithium-ion battery packs for hybrid electric vehicles[J]. Journal of Power Sources, 2017, 363: 291-303.
|
3 |
QIAN Z, LI Y M, RAO Z H. Thermal performance of lithium-ion battery thermal management system by using mini-channel cooling[J]. Energy Conversion and Management, 2016, 126: 622-631.
|
4 |
DARCOVICH K, MACNEIL D D, RECOSKIE S, et al. Comparison of cooling plate configurations for automotive battery pack thermal management[J]. Applied Thermal Engineering, 2019, 155: 185-195.
|
5 |
JARRETT A, KIM I Y. Influence of operating conditions on the optimum design of electric vehicle battery cooling plates[J]. Journal of Power Sources, 2014, 245: 644-655.
|
6 |
BAI F F, CHEN M B, SONG W J, et al. Thermal management performances of PCM/water cooling-plate using for lithium-ion battery module based on non-uniform internal heat source[J]. Applied Thermal Engineering, 2017, 126: 17-27.
|
7 |
HALLAJ S A, SELMAN J R. A novel thermal management system for electric vehi1cle batteries using phase-change material[J]. Journal of the Electrochemical Society, 2000, 147(9): 3231.
|
8 |
DENG T, RAN Y, ZHANG G D, et al. Novel leaf-like channels for cooling rectangular lithium ion batteries[J]. Applied Thermal Engineering, 2019, 150: 1186-1196.
|
9 |
DENG T, ZHANG G D, RAN Y, et al. Thermal performance of lithium ion battery pack by using cold plate[J]. Applied Thermal Engineering, 2019, 160: 114088.
|
10 |
DENG T, RAN Y, ZHANG G D, et al. Design optimization of bifurcating mini-channels cooling plate for rectangular Li-ion battery[J]. International Journal of Heat and Mass Transfer, 2019, 139: 963-973.
|
11 |
WANG Y, ZHANG G Q, YANG X Q. Optimization of liquid cooling technology for cylindrical power battery module[J]. Applied Thermal Engineering, 2019, 162: 114200.
|
12 |
PANCHAL S, MATHEW M, FRASER R, et al. Electrochemical thermal modeling and experimental measurements of 18650 cylindrical lithium-ion battery during discharge cycle for an EV[J]. Applied Thermal Engineering, 2018, 135: 123-132.
|
13 |
李望, 卢耀辉, 李振生, 等. 车用锂离子电池组冷却系统传热仿真分析[J]. 装备环境工程, 2021, 18(2): 6-12.
|
|
LI W, LU Y H, LI Z S, et al. Simulation analysis of heat transfer in cooling system of Li-ion battery pack for vehicles[J]. Equipment Environmental Engineering, 2021, 18(2): 6-12.
|
14 |
李夔宁, 何铖, 谢翌, 等. 大倍率放电工况下48 V软包电池包的热管理[J]. 储能科学与技术, 2021, 10(2): 679-688.
|
|
LI K N, HE C, XIE Y, et al. Thermal management of a 48 V pouch lithium-ion battery pack based on high rate discharge condition[J]. Energy Storage Science and Technology, 2021, 10(2): 679-688.
|
15 |
谢金红. 电动汽车锂离子电池组散热结构优化研究[D]. 广州: 华南理工大学, 2018.
|
|
XIE J H. Optimization investigation on the cooling structure of lithium-ion battery packages in electric vehicles[D]. Guangzhou: South China University of Technology, 2018.
|
16 |
张志鸿, 牟俊彦, 孟玉发. 风冷圆柱形锂离子电池系统热失控扩展特性[J]. 储能科学与技术, 2021, 10(2): 658-663.
|
|
ZHANG Z H, MOU J Y, MENG Y F. Thermal runaway propagation characteristics of an air-cooled cylindrical lithium-ion battery system[J]. Energy Storage Science and Technology, 2021, 10(2): 658-663.
|
17 |
冯旭宁. 车用锂离子动力电池热失控诱发与扩展机理、建模与防控[D]. 北京: 清华大学, 2016.
|
|
FENG X N. Thermal runaway initiation and propagation of lithium-ion traction battery for electric vehicle: Test, modeling and prevention[D]. Beijing: Tsinghua University, 2016.
|