1 |
ANDREWS D J, POLMATEER T L, WHEELER J P, et al. Enterprise risk and resilience of electric-vehicle charging infrastructure and the future mobile power grid[J]. Current Sustainable/Renewable Energy Reports, 2020, 7(1): 9-15.
|
2 |
DAS S, SATPATHY M P, ROUTARA B C, et al. Microstructural and joint analysis of ultrasonic welded aluminum to cupro-nickel sheets for lithium-ion battery packs[J]. Materials Science Forum, 2020, 978: 463-469.
|
3 |
谢建江, 高翔, 夏晨强, 等. 锂电池储能舱运行状态信息采集系统研究[J]. 储能科学与技术, 2021, 10(3): 1109-1116.
|
|
XIE J J , GAO X , XIA C Q , et al. Research on information acquisition system of lithium battery energy storage cabin[J]. Energy Storage Science and Technology, 2021, 10(3): 1109-1116.
|
4 |
左安昊, 方儒卿, 李哲. 锂离子电池电极结构参数对单体能量与功率的影响[J]. 储能科学与技术, 2021, 10(2): 470-482.
|
|
ZUO A H, FANG R Q, LI Z. Impact of electrode structure parameters on energy and power for lithium-ion cells[J]. Energy Storage Science and Technology, 2021, 10(2): 470-482.
|
5 |
LU Z, YU X L, ZHANG L Y, et al. Experimental investigation on the charge-discharge performance of the commercial lithium-ion batteries[J]. Energy Procedia, 2017, 143: 21-26.
|
6 |
CHENG H M, WANG F M, CHU J P. Effect of Lorentz force on the electrochemical performance of lithium-ion batteries[J]. Electrochemistry Communications, 2017, 76: 63-66.
|
7 |
SINGH P, KHARE N, CHATURVEDI P K. Li-ion battery ageing model parameter: SEI layer analysis using magnetic field probing[J]. Engineering Science and Technology, an International Journal, 2018, 21(1): 35-42.
|
8 |
DUNCA S, CREANGA D E, AILIESEI O, et al. Microorganisms growth with magnetic fluids[J]. Journal of Magnetism and Magnetic Materials, 2005, 289: 445-447.
|
9 |
OKUNO K, FUJINAMI R, ANO T, et al. Disappearance of growth advantage in stationary phase (GASP) phenomenon under a high magnetic field[J]. Bioelectrochemistry, 2001, 53(2): 165-169.
|
10 |
SHEN, K, WANG Z, BI X X, et al. Magnetic field-suppressed lithium dendrite growth for stable lithium-metal batteries[J]. Advanced Energy Materials, 2019, 9(20): 1900260.1-1900260.8.
|
11 |
BILLAUD J, BOUVILLE F, MAGRINI T, et al. Magnetically aligned graphite electrodes for high-rate performance Li-ion batteries[J]. Nature Energy, 2016, 1: doi: 10.1038/nenergy.2016.97.
|
12 |
ROWDEN B, GARCIA-ARAEZ N. A review of gas evolution in lithium ion batteries[J]. Energy Reports, 2020, 6: 10-18.
|
13 |
BLÄUBAUM L, RÖSE P, SCHMIDT L, et al. The effects of gas saturation of electrolytes on the performance and durability of lithium-ion batteries[J]. ChemSusChem, 2021, 14(14): 2943-2951.
|
14 |
LI Y K, WEI C, SHENG Y M, et al. Swelling force in lithium-ion power batteries[J]. Industrial & Engineering Chemistry Research, 2020, 59(27): 12313-12318.
|
15 |
CHEN J Q, WANG D, WANG Y, et al. An improved 3-D magnetic field generator with larger uniform region[J]. IEEE Transactions on Applied Superconductivity, 2016, 26(7): 1-5.
|
16 |
NISMAYANTI A, JANNAH H, RUGAYYA S, et al. Helmholtz coils model as pulsed electromagnetic field therapy devices for fracture healing using comsol multiphysics[J]. Journal of Physics: Conference Series, 2021, 1763(1): doi: 10.1088/1742-6596/1763/1/012060.
|
17 |
陈学文, 谢腾辉, 张家伟, 等. 亥姆霍兹线圈磁场的理论计算与实验讨论[J]. 西南师范大学学报(自然科学版), 2020, 45(3): 40-45.
|
|
CHEN X W, XIE T H, ZHANG J W, et al. On theoretical calculation and experimental discussion of magnetic field due to Helmholtz coil[J]. Journal of Southwest China Normal University (Natural Science Edition), 2020, 45(3): 40-45.
|
18 |
LOU T T, ZHANG W G, GUO H Y, et al. The internal resistance characteristics of lithium-ion battery based on HPPC method[J]. Advanced Materials Research, 2012, 455/456: 246-251.
|
19 |
YUAN ZOU J F, ZHANG X D. Quantifying electric vehicle battery's ohmic resistance increase caused by degradation from on-board data[J]. IFAC-PapersOnLine, 2019, 52(5): 297-302.
|
20 |
QIU C S, HE G, SHI W K, et al. The polarization characteristics of lithium-ion batteries under cyclic charge and discharge[J]. Journal of Solid State Electrochemistry, 2019, 23(6): 1887-1902.
|