储能科学与技术 ›› 2022, Vol. 11 ›› Issue (1): 258-264.doi: 10.19799/j.cnki.2095-4239.2021.0352

• 储能测试与评价 • 上一篇    下一篇

基于UGOA-BP的锂电池SOC估算

王帅1(), 马鸿雁1,2,3(), 窦嘉铭1, 张英达1, 李晟延1, 胡璐锦4   

  1. 1.北京建筑大学电气与信息工程学院
    2.分布式储能安全大数据研究所
    3.建筑大数据智能处理 方法研究北京市重点实验室
    4.北京建筑大学测绘与城市空间信息学院,北京 100044
  • 收稿日期:2021-07-16 修回日期:2021-09-08 出版日期:2022-01-05 发布日期:2022-01-10
  • 通讯作者: 马鸿雁 E-mail:565864152@qq.com;mahongyan@bucea.edu.cn
  • 作者简介:王帅(1996—),男,硕士研究生,研究方向为电池储能系统、智能算法、电力电子,E-mail:565864152@qq.com|马鸿雁,副教授,研究方向为电力电子与电力传动、建筑设备节能控制,E-mail:mahongyan@bucea.edu.cn
  • 基金资助:
    北京建筑大学博士基金项目(ZF15054);北京建筑大学2021年度研究生创新项目(PG2021056)

Estimation of lithium-ion battery state of charge based on UGOA-BP

Shuai WANG1(), Hongyan MA1,2,3(), Jiaming DOU1, Yingda ZHANG1, Shengyan LI1, Lujin HU4   

  1. 1.School of Electrical and Information Engineering, Beijing University of Civil Engineering and Architecture
    2.Institute of Distributed Energy Storage Safety Big Data
    3.Beijing Key Laboratory of Intelligent Processing for Building Big Data
    4.School of Geomatics and Urban Spatial Informatics, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
  • Received:2021-07-16 Revised:2021-09-08 Online:2022-01-05 Published:2022-01-10
  • Contact: Hongyan MA E-mail:565864152@qq.com;mahongyan@bucea.edu.cn

摘要:

电池荷电状态(SOC)的精确估算是储能设备安全运行的关键,本工作提出一种基于均匀分布策略改进的蝗虫优化算法和BP神经网络(UGOA-BP)的联合算法,在标准蝗虫优化算法(GOA)的基础上,引入了均匀分布函数,更新了非线性控制参数c,构建了新的随机调整机制,扩大了算法搜索范围,打破了局部开发受限的局面。同时,又受粒子群算法思想启发,对每代最优解进行保存记忆,通过选取随机个体引导种群的位置更新,弥补了蝗虫优化算法全局搜索能力弱的局限性,增加了种群多样性。采用某新能源公司储能设备的历史数据,设置电池SOC 100%~0的完整放电过程数据集和SOC 52%~49%的局部放电过程数据集,从两个维度对所提模型、蝗虫算法优化BP神经网络(GOA-BP)与传统BP神经网络模型进行对比测试分析。仿真结果表明,UGOA-BP模型预测值的绝对误差均处于[-0.050,0.050]区间范围,最大绝对误差为-0.046,平均均方误差仅为0.001,GOA-BP模型和BP神经网络的平均均方误差分别为0.009和0.067,模型预测精度优于其他方法,具备良好的准确性和工程应用价值。

关键词: 锂电池, 荷电状态, 蝗虫优化, BP神经网络

Abstract:

Accurate estimation of battery state of charge (SOC) is an important guarantee for the safe operation of energy storage devices. This work proposes a joint algorithm based on an improved grasshopper optimization algorithm and a backpropagation neural network (UGOA-BP). The algorithm introduces a uniform distribution function based on the standard grasshopper optimization algorithm, updates the control parameters, and builds a new system of random adjustment. The location update increases the population diversity and makes up for the limitations of the weak global search capability of the locust optimization algorithm. Historical data of energy storage equipment from a new energy company was used. The complete and partial discharge process data set of battery SOC from 100% to 0% and 52% to 49%, respectively, were selected. The proposed model, the grasshopper optimization algorithm BP neural network (GOA-BP), and the traditional BP neural network model were compared, tested, and analyzed from two dimensions. The simulation results show that the absolute errors of the UGOA-BP predicted values are all in the range of [-0.050, 0.050], with -0.046 maximum absolute error and 0.001 average mean square error. The average mean square errors of the GOA-BP model and the BP neural network are 0.009 and 0.067, respectively. Thus, the model prediction accuracy is better than other methods, with reasonable accuracy and engineering application value.

Key words: lithium-ion battery, state of charge, grasshopper optimisation, BP neural network

中图分类号: