1 |
DUNN J B, GAINES L, KELLY J C, et al. The significance of Li-ion batteries in electric vehicle life-cycle energy and emissions and recycling's role in its reduction[J]. Energy & Environmental Science, 2015, 8(1): 158-168.
|
2 |
CHOMBO P V, LAOONUAL Y. A review of safety strategies of a Li-ion battery[J]. Journal of Power Sources, 2020, 478: 228649.
|
3 |
KVASHA A, GUTIÉRREZ C, OSA U, et al. A comparative study of thermal runaway of commercial lithium ion cells[J]. Energy, 2018, 159: 547-557.
|
4 |
潘帅. 动力锂离子电池全生命周期内电热特性的演变规律研究[D]. 北京: 北京工业大学, 2020.PAN S. Study on evolution of electro-thermal characteristics of power lithium-ion battery during its entire life[D]. Beijing: Beijing University of Technology, 2020.
|
5 |
动力锂电池老化概说[EB/OL]. (2017-11-10)[2021-10-7]. https://zhuanlan.zhihu.com/p/30932280.html.Overview of power lithium battery aging[EB/OL]. (2017-11-10)[2021-10-7]. https://zhuanlan.zhihu.com/p/30932280.html.
|
6 |
任璞, 王顺利, 何明芳, 等. 基于内阻增加和容量衰减双重标定的锂电池健康状态评估[J]. 储能科学与技术, 2021, 10(2): 738-743.
|
|
REN P, WANG S L, HE M F, et al. State of health estimation of Li-ion battery based on dual calibration of internal resistance increasing and capacity fading[J]. Energy Storage Science and Technology, 2021, 10(2): 738-743.
|
7 |
丁黎, 李帆, 蔡文嘉, 等. 锂离子电池的老化特性分析[J]. 电源技术, 2019, 43(1): 77-80.
|
|
DING L, LI F, CAI W J. Analysis on aging characteristics of lithium-ion batteries[J]. Chinese Journal of Power Sources, 2019, 43(1): 77-80.
|
8 |
AGUBRA V, FERGUS J. Lithium ion battery anode aging mechanisms[J]. Materials, 2013, 6(4): 1310-1325.
|
9 |
张楠. 电动汽车用锂离子电池退化与剩余寿命预测研究[D]. 天津: 河北工业大学, 2019.ZHANG N. Research on degradation and remaining useful life prediction of lithium-ion battery for electric vehicles[D]. Tianjin: Hebei University of Technology, 2019.
|
10 |
纪常伟, 潘帅, 汪硕峰, 等. 动力锂离子电池老化速率影响因素的实验研究[J]. 北京工业大学学报, 2020, 46(11): 1272-1282.
|
|
JI C W, PAN S, WANG S F, et al. Experimental study on effect factors of aging rate for power lithium-ion batteries[J]. Journal of Beijing University of Technology, 2020, 46(11): 1272-1282.
|
11 |
SUN Y Q, KONG L X, KHAN H A, et al. Li-ion battery reliability-a case study of the apple iphone[J]. IEEE Access, 2019, 7: 71131-71141.
|
12 |
李利淼, 吕岩, 仝俊利, 等. 锂离子电池负极衰减机理的研究进展[J]. 电源技术, 2017, 41(2): 318-320.
|
|
LI L M, LÜ Y, TONG J L, et al. Research progress in anode decay mechanism of lithium ion battery[J]. Chinese Journal of Power Sources, 2017, 41(2): 318-320.
|
13 |
郭东亮, 陶风波, 孙磊, 等. 储能电站用磷酸铁锂电池循环老化机理研究[J]. 电源技术, 2020, 44(11): 1591-1593+1661.
|
|
GUO D L, TAO F B, SUN L, et al. Research on cycle aging mechanism of lithium iron phosphate battery for energy storage power station[J]. Chinese Journal of Power Sources, 2020, 44(11): 1591-1593+1661.
|
14 |
王永红, 来文青, 石海鹏, 等. 三元锂离子电池容量衰减机理研究进展[J]. 化学通报, 2020, 83(9): 785-791.
|
|
WANG Y H, LAI W Q, SHI H P, et al. Research progress in capacity fading mechanisms of ternary lithium ion batteries[J]. Chemistry, 2020, 83(9): 785-791.
|
15 |
TODOROV G N, VLASOV A I, VOLKOVA E E, et al. Sustainability in local power supply systems of production facilities where there is the compensatory use of renewable energy sources[J]. International Journal of Energy Economics and Policy, 2020, 10(3): 14-23.
|
16 |
阮海军. 低温环境下锂离子电池优化加热及充电方法研究[D]. 北京: 北京交通大学, 2019.RUAN H J. Optimal heating and charging methods for lithium-ion batteries under the low-temperature environment[D]. Beijing: Beijing Jiaotong University, 2019.
|
17 |
ZHU G L, WEN K C, LÜ W Q, et al. Materials insights into low-temperature performances of lithium-ion batteries[J]. Journal of Power Sources, 2015, 300: 29-40.
|
18 |
SELIVANOV K V, VLASOV A I, SHAKHNOV V A. Analysis of factors affecting the capacity of Li-ion rechargeable batteries at low temperatures[J]. Journal of Physics: Conference Series, 2020, 1679(2): 022053.
|
19 |
SINGER J P, BIRKE K P. Kinetic study of low temperature capacity fading in Li-ion cells[J]. Journal of Energy Storage, 2017, 13: 129-136.
|
20 |
孙智鹏, 陈立铎, 徐梓荐, 等. 锂离子电池典型温度与倍率放电特性分析[J]. 电源技术, 2020, 44(8): 1090-1092+1222.
|
|
SUN Z P, CHEN L D, XU Z J, et al. Analysis of typical temperature and rate discharge characteristics of Li-ion batteries[J]. Chinese Journal of Power Sources, 2020, 44(8): 1090-1092+1222.
|
21 |
路露, 周小红, 余乐平, 等. 锂离子电池低温性能研究进展[J]. 化工新型材料, 2021, 49(11): 55-58.
|
|
LU L, ZHOU X H, YU L P, et al. Research progress on low temperature performance of lithium ion battery[J]. New Chemical Materials, 2021, 49(11): 55-58.
|
22 |
WU W X, WANG S F, WU W, et al. A critical review of battery thermal performance and liquid based battery thermal management[J]. Energy Conversion and Management, 2019, 182: 262-281.
|
23 |
LIU C Y, XU F, LIU Y L, et al. High mass loading ultrathick porous Li4Ti5O12 electrodes with improved areal capacity fabricated via low temperature direct writing[J]. Electrochim Acta, 2019, 314: 81-88.
|
24 |
ZHU J G, KNAPP M, DEWI DARMA M S, et al. An improved electro-thermal battery model complemented by current dependent parameters for vehicular low temperature application[J]. Applied Energy, 2019, 248: 149-161.
|
25 |
王康康. 基于衰退老化状态的动力锂离子电池热效应分析[D]. 北京: 北京理工大学, 2018.WANG K K. Study on thermal effect of aged traction lithium ion batteries[D]. Beijing: Beijing Institute of Technology, 2018.
|
26 |
冯燕, 郑莉莉, 戴作强, 等. 18650三元锂离子电池的放电热特性[J]. 储能科学与技术, 2021, 10(1): 319-325.
|
|
FAN Y, ZHENG L L, DAI Z Q, et al. Thermal characteristics of 18650 ternary Li-ion battery during discharge[J]. Energy Storage Science and Technology, 2021, 10(1): 319-325.
|
27 |
曹志良. 锂电池充放电内阻的理论分析与试验研究[J]. 电子器件, 2019, 42(1): 132-137.
|
|
CAO Z L. Theoretical Analysis and Experimental Study on Internal Resistance of Lithium Battery[J]. Chinese Journal of Electron Devices, 2019, 42(1): 132-137.
|
28 |
毛亚, 白清友, 马尚德, 等. 循环老化对锂离子电池在绝热条件下的产热及热失控影响[J]. 储能科学与技术, 2018, 7(6): 1120-1127.
|
|
MAO Y, BAI Q Y, MA S D. Influence of cycling on the heat-release and thermal runaway of the lithium ion battery under adiabatic condition[J]. Energy Storage Science and Technology, 2018, 7(6): 1120-1127.
|
29 |
云凤玲, 卢世刚. 基于高镍三元材料锂离子动力电池在循环前后的热特性分析[J]. 稀有金属, 2018, 42(2): 182-190.
|
|
YUN F L, LU S G. Thermal characteristic analysis of lithium ion power battery based on high nickel ternary material before and after cycle[J]. Chinese Journal of Rare Metals, 2018, 42(2): 182-190.
|
30 |
LIN N, JIA Z, WANG Z H, et al. Understanding the crack formation of graphite particles in cycled commercial lithium-ion batteries by focused ion beam scanning electron microscopy[J]. Journal of Power Sources, 2017, 365: 235-239.
|
31 |
HAN X B, LU L G, ZHENG YJ, et al. A review on the key issues of the lithium ion battery degradation among the whole life cycle[J]. eTransportation, 2019, 1: 100005.
|
32 |
刘家龙. 18650型三元锂离子电池微过充老化与安全性研究[D]. 合肥: 中国科学技术大学, 2021.LIU J L. Aging and safety behaviors of18650 ternary lithium-ion battery caused by slight overcharging[D]. Hefei: University of Science and Technology of China, 2021.
|
33 |
吴唐琴. 锂离子电池产热和热诱导失控特性实验研究[D]. 合肥: 中国科学技术大学, 2018.WU T Q. Experimental study on heat generation and thermal induced runaway of lithium-ion battery[D]. Hefei: University of Science and Technology of China, 2018.
|
34 |
黄海. 锂离子动力电池老化特性研究与循环寿命预测[D]. 济南: 山东大学, 2016.HUANG H. Research on aging performances and cycle-life predictions of Li-ion battery[D]. Jinan: Shandong University, 2016.
|
35 |
陈虎, 熊辉, 厉运杰, 等. 锂离子电池产热特性研究进展[J]. 储能科学与技术, 2019, 8(S1): 49-55.
|
|
CHEN H, XIONG H, LI Y J, et al. Research progress on thermogenic characteristics of lithium ion batteries[J]. Energy Storage Science and Technology, 2019, 8(S1): 49-55.
|