[1] LI Chen, ZHANG Xiong, WANG Kai, et al. High-power lithiumion hybrid supercapacitor enabled by holey carbon nanolayers with targeted porosity[J]. Journal of Power Sources, 2018, 400:468-477.
[2] ANSEAN D, DUBARRY M, DEVIE A, et al. Fast charging technique for high power LiFePO4 batteries:A mechanistic analysis of aging[J]. Journal of Power Sources, 2016, 321:201-209.
[3] XIONG Rui, DUAN Yanzhou, CAO Jiayi, et al. Battery and ultracapacitor in-the-loop approach to validate a real-time power management method for an all-climate electric vehicle[J]. Applied Energy, 2018, 217:153-165.
[4] SUN Xianzhong, ZHANG Xiong, ZHANG Haitao, et al. High performance lithium-ion hybrid capacitors with pre-lithiated hard carbon anodes and bifunctional cathode electrodes[J]. Journal of Power Sources, 2014, 270:318-325.
[5] HAN Pengxian, XU Gaojie, HAN Xiaoqi, et al. Lithium ion capacitors in organic electrolyte system:Scientific problems, material development, and key technologies[J]. Advanced Energy Materials, 2018, 8(26):doi:10.1002/aenm.201801243.
[6] CHACKO S, CHUNG Y M. Thermal modelling of Li-ion polymer battery for electric vehicle drive cycles[J]. Journal of Power Sources, 2012, 213:296-303.
[7] SUN Xianzhong, ZHANG Xiong, WANG Kai, et al. Temperature effect on electrochemical performances of Li-ion hybrid capacitors[J]. Journal of Solid State Electrochemistry, 2015, 19(8):2501-2506.
[8] LIU Binghe, JIA Yikai, LI Juan, et al. Safety issues caused by internal short circuits in lithium-ion batteries[J]. Journal of Materials Chemistry A, 2018, 6(43):21475-21484.
[9] BERNARDI D, PAWLIKOWSKI E, NEWMAN J. A general energybalance for battery systems[J]. Journal of the Electrochemical Society, 1985, 132(1):5-12.
[10] PENG Peng, JIANG Fangming. Thermal behavior analyses of stacked prismatic LiCoO2 lithium-ion batteries during oven tests[J]. International Journal of Heat and Mass Transfer, 2015, 88:411-423.
[11] CHEN S C, WAN C C, WANG Y Y. Thermal analysis of lithium-ion batteries[J]. Journal of Power Sources, 2005, 140(1):111-124.
[12] LEE D H, KIM U S, SHIN C B, et al. Modelling of the thermal behaviour of an ultracapacitor for a 42 V automotive electrical system[J]. Journal of Power Sources, 2008, 175(1):664-668.
[13] WANG Kai, ZHANG Li, JI Bingcheng, et al. The thermal analysis on the stackable supercapacitor[J]. Energy, 2013, 59:440-444.
[14] BELT J R. Battery test manual for plug-in hybrid electric vehicles[R/OL]. http://www.inl.gov, December, 2010.
[15] SUN Xianzhong, ZHANG Xiong, LIU Wenjie, et al. Electrochemical performances and capacity fading behaviors of activated carbon/hard carbon lithium ion capacitor[J]. Electrochimica Acta, 2017, 235:158-166.
[16] CHEN Yufei, EVANS J W. Three-dimensional thermal modeling of lithium-polymer batteries under galvanostatic discharge and dynamic power profile[J]. Journal of the Electrochemical Society, 1994, 141(11):2947-2955.
[17] 王宇晖, 靳俊, 郭战胜, 等. 锂硫电池放电过程的热模拟[J]. 储能科学与技术, 2017, 6(1):85-93. WANG Yuhui, JIN Jun, GUO Zhansheng, et al. Thermal simulation for lithium-sulfur battery during discharge process[J]. Energy Storage Science and Technology, 2017, 6(1):85-93.
[18] 安治国, 李升东, 张栋省, 等. 动力锂离子电池放电热模拟分析[J]. 电源技术, 2018, 42(2):188-190. AN Zhiguo, LI Shengdong, ZHANG Dongsheng, et al. Analysis of discharging heating simulation of lithium-ion power battery[J]. Chinese Journal of Power Sources, 2018, 42(2):188-190.
[19] 刘萌, 张超. 不同放电倍率下锂离子电池热效应分析研究[J]. 工业加热, 2018(4):1-3. LIU Meng, ZHANG Chao. Study on heating analysis of lithium battery for different discharge rates[J]. Industrial Heating, 2018(4):1-3.
[20] 何亮明, 杜翀. 圆柱形锂离子电池的三维热模拟[J]. 电池工业, 2010, 15(3):151-155. HE Liangming, DU Chong. A three-dimensional thermal model for cylindrical Li-ion batteries[J]. Chinese Battery Industry, 2010, 15(3):151-155. |